Advertisement

Incident Photosynthetic Active Radiation

  • Shunlin LiangEmail author
  • Xiaotong Zhang
  • Zhiqiang Xiao
  • Jie Cheng
  • Qiang Liu
  • Xiang Zhao
Chapter
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

Solar energy in the 400–700 nm spectral range, the so-called photosynthetically active radiation (PAR), plays an important role in photosynthesis, which controls the exchange of water vapor and carbon dioxide between vegetation and the atmosphere. This chapter introduces the GLASS PAR product, covering the algorithm and its validation and analysis. In the first section, a brief introduction will be given. The satellite data used by the GLASS PAR product and detailed algorithm information will be introduced in Sect. 6.2. Quality control and evaluation of the GLASS PAR product using ground measurements will be presented in Sect. 6.3. Preliminary analysis and applications of the GLASS PAR product are shown in Sect. 6.4. A short summary will be given at the end of this chapter.

Keywords

PAR Photosynthetically active radiation Remote sensing MODIS MSG MTSAT GOES 

References

  1. Anderson GP, Berk A, Acharya PK, Matthew MW, Bernstein LS, James H. Chetwynd J, Dothe H, Adler-Golden SM, Ratkowski AJ, Felde GW, Gardner JA, Hoke ML, Richtsmeier SC, Pukall B, Mello JB, Jeong LS (1999) MODTRAN4: radiative transfer modeling for remote sensing. In Anton K, John DG (eds.) SPIE, pp 2–10Google Scholar
  2. Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD—A national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81:2341–2357CrossRefGoogle Scholar
  3. Augustine JA, Hodges GB, Cornwall CR, Michalsky JJ, Medina CI (2005) An update on SURFRAD—the GCOS surface radiation budget network for the continental united states. J Atmos Oceanic Technol 22:1460–1472CrossRefGoogle Scholar
  4. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  5. Dye DG (2004) Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. J Geophys Res Atmos 109:D10203CrossRefGoogle Scholar
  6. Eck TF, Dye DG (1991) Satellite estimation of incident photosynthetically active radiation using ultraviolet reflectance. Remote Sens Environ 38:135–146CrossRefGoogle Scholar
  7. Frouin R, McPherson J (2012) Estimating photosynthetically available radiation at the ocean surface from GOCI data. Ocean Sci J 47:313–321CrossRefGoogle Scholar
  8. Frouin R, Murakami H (2007) Estimating photosynthetically available radiation at the ocean surface from ADEOS-II global imager data. J Oceanogr 63:493–503CrossRefGoogle Scholar
  9. Frouin R, Pinker RT (1995) Estimating photosynthetically active radiation (PAR) at the earth’s surface from satellite observations. Remote Sens Environ 51:98–107CrossRefGoogle Scholar
  10. Hicke JA (2005). NCEP and GISS solar radiation data sets available for ecosystem modeling: description, differences, and impacts on net primary production. Global Biogeochem Cycles 19Google Scholar
  11. Jacovides CP, Tymvios FS, Asimakopoulos DN, Theofilou KM, Pashiardes S (2003) Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theoret Appl Climatol 74:227–233CrossRefGoogle Scholar
  12. Laszlo I, Ciren P, Liu HQ, Kondragunta S, Tarpley JD, Goldberg MD (2008) Remote sensing of aerosol and radiation from geostationary satellites. Adv Space Res 41:1882–1893CrossRefGoogle Scholar
  13. Liang S, Zheng T, Liu R, Fang H, Tsay SC, Running S (2006) Estimation of incident photosynthetically active radiation from moderate resolution imaging spectrometer data. J Geophys Res Atmos 111:D15208CrossRefGoogle Scholar
  14. Liang S, Li X, Wang J (ed) (2012) Advanced remote sensing: terrestrial information extraction and applications. Academic Press, OxfordGoogle Scholar
  15. Liu R, Liang S, He H, Liu J, Zheng T (2008) Mapping incident photosynthetically active radiation from MODIS data over China. Remote Sens Environ 112:998–1009CrossRefGoogle Scholar
  16. Pinker RT, Laszlo I (1992a) Global distribution of photosynthetically active radiation as observed from satellites. J Clim 5:56–65CrossRefGoogle Scholar
  17. Pinker RT, Laszlo I (1992b) Modeling surface solar irradiance for satellite applications on a global scale. J Appl Meteorol 31:194–211CrossRefGoogle Scholar
  18. Pinker RT, Tarpley JD, Laszlo I, Mitchell KE, Houser PR, Wood EF, Schaake JC, Robock A, Lohmann D, Cosgrove BA, Sheffield J, Duan Q, Luo L, Higgins RW (2003) Surface radiation budgets in support of the GEWEX continental-scale international project (GCIP) and the Gewex Americas prediction project (GAPP), including the North American land data assimilation system (NLDAS) project. J Geophys Res Atmos 108:8844CrossRefGoogle Scholar
  19. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–841CrossRefGoogle Scholar
  20. Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835CrossRefGoogle Scholar
  21. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience 54Google Scholar
  22. Schaaf C, Gao F, Strahler A, Lucht W, Li X, Tsung T, Strugll N, Zhang X, Jin Y, Muller P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont R, Hu B, Liang S, Privette J, Roy D (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148CrossRefGoogle Scholar
  23. Su W, Charlock TP, Rose FG, Rutan D (2007) Photosynthetically active radiation from clouds and the earth’s radiant energy system (CERES) products. J Geophys Res Biogeosciences 112:G02022CrossRefGoogle Scholar
  24. Van Laake PE, Sanchez-Azofeifa GA (2004) Simplified atmospheric radiative transfer modelling for estimating incident PAR using MODIS atmosphere products. Remote Sens Environ 91:98–113CrossRefGoogle Scholar
  25. Vermote E, Nazmi Z, Christopher O (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83:97–111CrossRefGoogle Scholar
  26. Wang D, Liang S (2010) Using multiresolution tree to integrate MODIS and MISR-L3 LAI products. IGARSS 2010:1027–1030Google Scholar
  27. Wang K, Zhou X, Liu J, Sparrow M (2005) Estimating surface solar radiation over complex terrain using moderate-resolution satellite sensor data. Int J Remote Sens 26:47–58CrossRefGoogle Scholar
  28. Wang Q, Kakubari Y, Kubota M, Tenhunen J (2007) Variation on PAR to global solar radiation ratio along altitude gradient in Naeba Mountain. Theoret Appl Climatol 87:239–253CrossRefGoogle Scholar
  29. Wielicki BA, Barkstrom BR, Baum BA, Charlock TP, Green RN, Kratz DP, Lee RB, Minnis P, Smith GL, Takmeng W, Young DF, Cess RD, Coakley JA, Crommelynck DAH, Donner L, Kandel R, King MD, Miller AJ, Ramanathan V, Randall DA, Stowe LL, Welch RM (1998) Clouds and the earth’s radiant energy system (CERES): algorithm overview. IEEE Trans Geosci Remote Sens 36:1127–1141CrossRefGoogle Scholar
  30. Yuan W, Liu S, Zhou G, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu Y, Law BE, Stoy PC, Vesala T, Wofsy SC (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol 143:189–207CrossRefGoogle Scholar
  31. Yuan W, Liu S, Yu G, Bonnefond JM, Chen J, Davis K, Desai AR, Goldstein AH, Gianelle D, Rossi F (2010) Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens Environ 114:1416–1431CrossRefGoogle Scholar
  32. Zhang X, Liang S (2012). Incident solar radiation. In Liang S, Wang J, Li X (eds) Advanced remote sensing: terestrial information extraction and applications, Chapter 6. Elsevier, Amsterdam, pp 127–173Google Scholar
  33. Zhang YC, Rossow WB, Lacis AA (1995) Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. method and sensitivity to input data uncertainties. J Geophys Res Atmos 100:1149–1165CrossRefGoogle Scholar
  34. Zhang X, Liang S, Zhou G, Wu H (2013). Mapping global incident downward shortwave radiation and photosynthetically active radiation over land surfaces using multiple satellite data (Submitted). J Geophys Res AtmosGoogle Scholar
  35. Zhao M, Running SW, Nemani RR (2006) Sensitivity of moderate resolution imaging spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J Geophys Res Biogeosciences 111:G01002CrossRefGoogle Scholar
  36. Zhao X, Liang S, Liu S, Yuan W, Xiao Z, Liu Q, Cheng J, Zhang X, Tang H, Zhang X, Liu Q, Zhou G, Xu S, Yu K (2013) The global land surface satellite (GLASS) remote sensing data processing system and products. Remote Sens 5:2436–2450CrossRefGoogle Scholar
  37. Zheng T, Liang SL (2011) A Bayesian approach to integrate satellite-estimated instantaneous photosynthetically active radiation product for daily value calculation. J Geophys Res Atmos 116Google Scholar
  38. Zheng T, Liang S, Wang K (2008) Estimation of incident photosynthetically active radiation from GOES visible imagery. J Appl Meteorol Climatol 47:853–868CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Shunlin Liang
    • 2
    • 1
    Email author
  • Xiaotong Zhang
    • 2
  • Zhiqiang Xiao
    • 3
  • Jie Cheng
    • 2
  • Qiang Liu
    • 2
  • Xiang Zhao
    • 2
  1. 1.Department of Geographical SciencesUniversity of MarylandCollege ParkUSA
  2. 2.State Key Laboratory of Remote Sensing Science and College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Remote Sensing Science School of GeographyBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations