Growth and Isoperimetric Profile of Planar Graphs

  • Itai Benjamini
Part of the Lecture Notes in Mathematics book series (LNM, volume 2100)


In this section we review a joint work with Panos Papasoglu, see [BP11], in which the following is proved:


  1. [Ang03]
    O. Angel, Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13(5), 935–974 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [AS03]
    O. Angel, O. Schramm, Uniform infinite planar triangulations. Commun. Math. Phys. 241(2–3), 191–213 (2003)MathSciNetzbMATHGoogle Scholar
  3. [BC11]
    I. Benjamini, N. Curien, On limits of graphs sphere packed in Euclidean space and applications. Europ. J. Combin. 32(7), 975–984 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BP11]
    I. Benjamini, P. Papasoglu, Growth and isoperimetric profile of planar graphs. Proc. Am. Math. Soc. 139(11), 4105–4111 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BS01b]
    I. Benjamini, O. Schramm, Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 pp. (2001) (electronic)Google Scholar
  6. [CFKP97]
    J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry, Hyperbolic geometry, in Flavors of Geometry. Mathematical Sciences Research Institute Publications, vol. 31 (Cambridge University Press, Cambridge, 1997), pp. 59–115Google Scholar
  7. [Kri04]
    M.A. Krikun, A uniformly distributed infinite planar triangulation and a related branching process. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 307, 141–174 (2004); Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10, 282–283 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Itai Benjamini
    • 1
  1. 1.Department of MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations