Skip to main content

Preparing Students with 21st Century Skills: Integrating Scientific Knowledge, Skills, and Epistemic Beliefs in Middle School Science Curricula

  • Chapter
  • First Online:
Emerging Technologies for STEAM Education

Abstract

In the 21st century, every citizen needs to acquire adequate scientific knowledge and skills to be competitive in the job market, and be scientific literate in everyday contexts. The recent push for STEAM education calls for integrating science, technology, engineering, art, and mathematic components together to prepare students for 21th century challenges. To address these concerns, in this chapter we discuss how to prepare students with critical skills to succeed in the 21st century. Our discussion of reconceptualizing science curriculum in middle school level is based on three major perspectives. To prepare students to face the challenges in the 21st century, educators need to help students (1) acquire sufficient core scientific knowledge, (2) gain skills needed to engage in scientific practice, and (3) develop sophisticated epistemic beliefs to understand the nature of scientific knowledge and the methods of making it. We discuss the importance of each perspective in science education in light of the current literature, and address some remaining issues for future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AASL. (2007). Standards for the 21st-century learner. http://www.ala.org/aasl/standards-guidelines/learning-standards. Accessed 24 April 2014.

  • Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353–374. doi:10.1080/09500693.2011.629013.

    Article  Google Scholar 

  • Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., et al. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419. doi:10.1002/sce.10118.

    Article  Google Scholar 

  • Alfano, M. (2012). Expanding the situationist challenge to responsibilist virtue epistemology. The Philosophical Quarterly, 62(247), 223–249. doi:10.1111/j.1467-9213.2011.00016.x.

    Article  Google Scholar 

  • American Association for the Advancement of Science. (1990). Science for all Americans. New York: Oxford University Press.

    Google Scholar 

  • Anderman, E. M., Sinatra, G. M., & Gray, D. L. (2012). The challenges of teaching and learning about science in the twenty-first century: Exploring the abilities and constraints of adolescent learners. Studies in Science Education, 48(1), 89–117.

    Article  Google Scholar 

  • Anderson, D., Thomas, G. P., & Nashon, S. M. (2009). Social barriers to meaningful engagement in biology field trip group work. Science Education, 93(3), 511–534. doi:10.1002/sce.20304.

    Article  Google Scholar 

  • Angeli, C. (2013). Examining the effects of field dependence–independence on learners’ problem-solving performance and interaction with a computer modeling tool: Implications for the design of joint cognitive systems. Computers & Education, 62, 221–230. doi:10.1016/j.compedu.2012.11.002.

    Article  Google Scholar 

  • Applebaum, S., Barker, B., & Pinzino, D. (2006). Socioscientific issues as context for conceptual understanding of content. San Francisco: Paper presented at the National Association for Research in Science Teaching.

    Google Scholar 

  • Ashby, C. M. (2006). Higher education: Science technology engineering mathematics trends and the role of federal programs. United States Government Accountability Office, GAO-06-702T.

    Google Scholar 

  • Baildon, M., & Damico, J. (2011). Judging the credibility of Internet sources: Developing critical and reflexive readers of complex digital texts. Social Education, 75(5), 269–273.

    Google Scholar 

  • Barab, S. A., Sadler, T. D., Heiselt, C., Hickey, D., & Zuiker, S. (2010). Erratum to: Relating narrative, inquiry, and inscriptions: Supporting consequential play. Journal of Science Education and Technology, 19(4), 387–407. doi:10.1007/s10956-010-9220-0.

    Article  Google Scholar 

  • Barzilai, S., & Zohar, A. (2012). Epistemic thinking in action: Evaluating and integrating online sources. Cognition and Instruction, 30(1), 39–85. doi:10.1080/07370008.2011.636495.

    Article  Google Scholar 

  • Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (4th edn., pp. 505–518). New York: Springer.

    Chapter  Google Scholar 

  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2008). A scaffolding framework to support the construction of evidence-based arguments among middle school students. Educational Technology Research and Development, 56(4), 401–422.

    Article  Google Scholar 

  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2010). Problem-based learning and argumentation: Testing a scaffolding framework to support middle school students’ creation of evidence-based arguments. Instructional Science, 39(5), 667–694. doi:10.1007/s11251-010-9148-z.

    Article  Google Scholar 

  • Belland, B. R., Walker, A., Olsen, M. W., & Leary, H. (In press). Influence of computer-based scaffolding characteristics and methodological quality on cognitive outcomes in STEM education: A meta-analysis. Educational Technology and Society.

    Google Scholar 

  • Bendixen, L. D., & Rule, D. C. (2004). An integrative approach to personal epistemology: A guiding model. Educational Psychologist, 39(1), 69–80. doi:10.1207/s15326985ep3901_7.

    Article  Google Scholar 

  • Bequette, J. W., & Bequette, M. B. (2012). A Place for art and design education in the STEM conversation. Art Education, 65(2), 40–47.

    Google Scholar 

  • Brand-Gruwel, S., Wopereis, I., & Walraven, A. (2009). A descriptive model of information problem solving while using internet. Computers & Education, 53(4), 1207–1217. doi:10.1016/j.compedu.2009.06.004.

    Article  Google Scholar 

  • Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473–498. doi:10.1002/sce.20278.

    Article  Google Scholar 

  • Buehl, M. M., & Alexander, P. A. (2001). Beliefs about academic knowledge. Educational Psychology Review, 13(4), 385–418.

    Article  Google Scholar 

  • Bureau of Labor Statistics. (2013). Employment projections: 2012–2022 summary, http://www.bls.gov/news.release/ecopro.toc.htm.

  • Business-Higher Education Forum. (2010). Increasing the number of U.S. STEM graduates: Insights from the STEM education modeling project. Washington, D. C.: Business-Higher Education Forum. http://www.ncci-cu.org/downloads/BHEF_STEM.pdf.

    Google Scholar 

  • Bybee, R. (2010). A new challenge for science education leaders: Developing 21st century workforce skills. In J. Rhoton (Ed.), Science education leadership: Best practices for a new century (pp. 33–49). Arlington: NSTA Press.

    Google Scholar 

  • Casner-Lotto, J., Barrington, L., Barrington, L., & Barrington, L. (2006). Are they really ready to work?: Employers’ perspectives on the basic knowledge and applied skills of new entrants to the 21st century U.S. workforce. United States: Conference Board: Partnership for 21st Century Skills: Corporate Voices for Working Families: Society for Human Resource Management. http://www.p21.org/storage/documents/FINAL_REPORT_PDF09-29-06.pdf.

  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi:10.1002/sce.10001.

    Article  Google Scholar 

  • Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141–167. doi:10.1080/00461520.2011.587722.

    Article  Google Scholar 

  • Chiu, M. M., & Khoo, L. (2003). Rudeness and status effects during group problem solving: Do they bias evaluations and reduce the likelihood of correct solutions? Journal of Educational Psychology, 95(3), 506–523. doi:10.1037/0022-0663.95.3.506.

    Article  Google Scholar 

  • Clark, D. B., D’Angelo, C. M., & Menekse, M. (2009). Initial structuring of online discussions to improve learning and argumentation: Incorporating students’ own explanations as seed comments versus an augmented-preset approach to seeding discussions. Journal of Science Education and Technology, 18(4), 321–333. doi:10.1007/s10956-009-9159-1.

    Article  Google Scholar 

  • Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. The Journal of the Learning Sciences, 12(1), 91–142.

    Article  Google Scholar 

  • Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40(2), 133–148. doi:10.1007/s11165-008-9104-y.

    Article  Google Scholar 

  • Day, S. B., & Goldstone, R. L. (2012). The import of knowledge export: Connecting findings and theories of transfer of learning. Educational Psychologist, 47(3), 153–176. doi:10.1080/00461520.2012.696438.

    Article  Google Scholar 

  • Dolan, T. J., Nichols, B. H., & Zeidler, D. L. (2009). Using socioscientific issues in primary classrooms. Journal of Elementary Science Education, 21(3), 1–12.

    Article  Google Scholar 

  • Drew, S. V. (2013). Open up the ceiling on the common core state standards: Preparing students for 21st-century literacy—now. Journal of Adolescent & Adult Literacy, 56(4), 321–330.

    Article  Google Scholar 

  • Duschl, R. A. (2012). The second dimension—Crosscutting concepts. The Science Teacher, 9(2), 34–38.

    Google Scholar 

  • Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103–120. doi:10.1002/j.2168-9830.2005.tb00832.x.

    Article  Google Scholar 

  • Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289–2315. doi:10.1080/09500693.2012.667582.

    Article  Google Scholar 

  • European Communities. (2007). Key competences for lifelong learning: European reference framework. Luxembourg: Office for Official Publications of the European Communities. http://www.britishcouncil.org/sites/britishcouncil.uk2/files/youth-in-action-keycomp-en.pdf.

  • Fawcett, L. M., & Garton, A. F. (2005). The effect of peer collaboration on children’s problem-solving ability. British Journal of Educational Psychology, 75(2), 157–169. doi:10.1348/000709904X23411.

    Article  Google Scholar 

  • Ferguson, L. E., & Bråten, I. (2013). Student profiles of knowledge and epistemic beliefs: Changes and relations to multiple-text comprehension. Learning and Instruction, 25, 49–61. doi:10.1016/j.learninstruc.2012.11.003.

    Article  Google Scholar 

  • Ferguson, L. E., Bråten, I., & Strømsø, H. I. (2012). Epistemic cognition when students read multiple documents containing conflicting scientific evidence: A think-aloud study. Learning and Instruction, 22(2), 103–120. doi:10.1016/j.learninstruc.2011.08.002.

    Article  Google Scholar 

  • Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404–423. doi:10.1002/sce.20263.

    Article  Google Scholar 

  • Ford, M. J. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30(3), 207–245. doi:10.1080/07370008.2012.689383.

    Article  Google Scholar 

  • Glassner, A., Weinstock, M., & Neuman, Y. (2005). Pupils’ evaluation and generation of evidence and explanation in argumentation. British Journal of Educational Psychology, 75(1), 105–118. doi:10.1348/000709904X22278.

    Article  Google Scholar 

  • Golanics, J. D., & Nussbaum, E. M. (2007). Enhancing online collaborative argumentation through question elaboration and goal instructions. Journal of Computer Assisted Learning, 24(3), 167–180. doi:10.1111/j.1365-2729.2007.00251.x.

    Article  Google Scholar 

  • Goldman, A. I. (1993). Epistemic folkways and scientific epistemology. Philosophical Issues, 3, 271–285. doi:10.2307/1522948.

    Article  Google Scholar 

  • Gray, L., Thomas, N., & Lewis, L. (2010). Educational technology in U.S. public schools: Fall 2008 (NCES 2010-034). U.S. Department of Education, National Center for Education Statistics. Washington, D. C.: U.S. Government Printing Office.

    Google Scholar 

  • Greene, J. A., Azevedo, R., & Torney-Purta, J. (2008). Modeling epistemic and ontological cognition: Philosophical perspectives and methodological directions. Educational Psychologist, 43(3), 142–160. doi:10.1080/00461520802178458.

    Article  Google Scholar 

  • Hofer, B. K. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25(4), 378–405. doi:10.1006/ceps.1999.1026.

    Article  Google Scholar 

  • Hofer, B. K. (2004). Epistemological understanding as a metacognitive process: Thinking aloud during online searching. Educational Psychologist, 39(1), 43–55. doi:10.1207/s15326985ep3901_5.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.

    Article  Google Scholar 

  • Hollnagel, E., & Woods, D. D. (2005). Joint cognitive systems: Foundations of cognitive systems engineering. CRC Press.

    Google Scholar 

  • Hung, W. (2013). Team-based complex problem solving: A collective cognition perspective. Educational Technology Research and Development, 61(3), 365–384. doi:10.1007/s11423-013-9296-3.

    Article  Google Scholar 

  • International ICT Literacy Panel. (2002). Digital transformation: A framework for ICT literacy. Princeton: Educational Testing Services. http://www.ets.org/Media/Research/pdf/ICTREPORT.pdf.

    Google Scholar 

  • Janssen, J., & Bodemer, D. (2013). Coordinated computer-supported collaborative learning: Awareness and awareness Tools. Educational Psychologist, 48(1), 40–55. doi:10.1080/00461520.2012.749153.

    Article  Google Scholar 

  • Jonassen, D. H. (2003). Using cognitive tools to represent problems. Journal of Research on Technology in Education, 35(3), 362–381.

    Article  Google Scholar 

  • Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. New York: Routledge.

    Google Scholar 

  • Kereluik, K., Mishra, P., Fahnoe, C., & Terry, L. (2013). What knowledge is of most worth: Teacher knowledge for 21st century learning. Journal of Digital Learning in Teacher Education, 29(4), 127–140.

    Article  Google Scholar 

  • Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578. doi:10.1002/tea.10036.

    Article  Google Scholar 

  • Khishfe, R., & Lederman, N. (2006). Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching, 43(4), 395–418. doi:10.1002/tea.20137.

    Article  Google Scholar 

  • Kim, J., & Lee, W. (2013). Meanings of criteria and norms: Analyses and comparisons of ICT literacy competencies of middle school students. Computers & Education, 64, 81–94.

    Article  Google Scholar 

  • Kim, M. C., Hannafin, M. J., & Bryan, L. A. (2007). Technology-enhanced inquiry tools in science education: An emerging pedagogical framework for classroom practice. Science Education, 91(6), 1010–1030. doi:10.1002/sce.20219.

    Article  Google Scholar 

  • Kitchener, R. F. (2002). Folk epistemology: An introduction. New Ideas in Psychology, 20(2), 89–105.

    Article  Google Scholar 

  • Knight, L. V., & Mattick, K. (2006). “When I first came here, I thought medicine was black and white”: Making sense of medical students’ ways of knowing. Social Science & Medicine, 63(4), 1084–1096.

    Article  Google Scholar 

  • Kolstø, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., et al. (2006). Science students’ critical examination of scientific information related to socioscientific issues. Science Education, 90(4), 632–655. doi:10.1002/sce.20133.

    Article  Google Scholar 

  • Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking & Reasoning, 13(2), 90–104.

    Article  Google Scholar 

  • Kuhn, D., Cheney, R., & Weinstock, M. (2000). The development of epistemological understanding. Cognitive Development, 15(3), 309–328.

    Article  Google Scholar 

  • Kuiper, E., Volman, M., & Terwel, J. (2009). Developing Web literacy in collaborative inquiry activities. Computers & Education, 52(3), 668–680. doi:10.1016/j.compedu.2008.11.010.

    Article  Google Scholar 

  • Laru, J., Järvelä, S., & Clariana, R. B. (2012). Supporting collaborative inquiry during a biology field trip with mobile peer-to-peer tools for learning: A case study with K-12 learners. Interactive Learning Environments, 20(2), 103–117. doi:10.1080/10494821003771350.

    Article  Google Scholar 

  • Leu, D. J., McVerry, J., Ian O’Byrne, W., Kiili, C., Zawilinski, L., Everett-Cacopardo, H., et al. (2011). The new literacies of online reading comprehension: Expanding the literacy and learning curriculum. Journal of Adolescent & Adult Literacy, 55(1), 5–14.

    Google Scholar 

  • Linn, M. (2003). Technology and science education: Starting points, research programs, and trends. International Journal of Science Education, 25(6), 727–758. doi:10.1080/09500690305017.

    Article  Google Scholar 

  • Linn, M. C., Davis, E. A., & Bell, P. (2004). Internet environments for science education. Mahwah: Routledge.

    Google Scholar 

  • Mason, L., & Boldrin, A. (2008). Epistemic metacognition in the context of information searching on the Web. In M. S. Khine (Ed.), Knowing, knowledge and beliefs (pp. 377–404). Dordrecht: Springer. http://link.springer.com/chapter/10.1007/978-1-4020-6596-518.

    Chapter  Google Scholar 

  • Mason, L., & Boscolo, P. (2004). Role of epistemological understanding and interest in interpreting a controversy and in topic-specific belief change. Contemporary Educational Psychology, 29(2), 103–128. doi:10.1016/j.cedpsych.2004.01.001.

    Article  Google Scholar 

  • Mason, L., Boldrin, A., & Ariasi, N. (2009). Epistemic metacognition in context: Evaluating and learning online information. Metacognition and Learning, 5(1), 67–90. doi:10.1007/s11409-009-9048-2.

    Article  Google Scholar 

  • McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. The Journal of the Learning Sciences, 15(2), 153–191.

    Article  Google Scholar 

  • Muis, K. R., & Duffy, M. C. (2013). Epistemic climate and epistemic change: Instruction designed to change students’ beliefs and learning strategies and improve achievement. Journal of Educational Psychology, 105(1), 213–225. doi:10.1037/a0029690.

    Article  Google Scholar 

  • Muis, K. R., Bendixen, L. D., & Haerle, F. C. (2006). Domain-generality and domain-specificity in personal epistemology research: Philosophical and empirical reflections in the development of a theoretical framework. Educational Psychology Review, 18(1), 3–54. doi:10.1007/s10648-006-9003-6.

    Article  Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, D. C.: National Academy Press.

    Google Scholar 

  • National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, D. C.: The National Academies Press.

    Google Scholar 

  • National Research Council. (2010). Exploring the intersection of science education and 21st century skills: A workshop summary. Washington, D. C.: National Academies Press.

    Google Scholar 

  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D. C.: The National Academies Press.

    Google Scholar 

  • National Science Teachers Association. (2011). NSTA Position statement: Quality science education and 21st-century skills. http://www.nsta.org/about/positions/21stcentury.aspx.

  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, D. C.: The National Academies Press.

    Google Scholar 

  • Nokes-Malach, T. J., & Mestre, J. P. (2013). Toward a model of transfer as sense-making. Educational Psychologist, 48(3), 184–207. doi:10.1080/00461520.2013.807556.

    Article  Google Scholar 

  • Noroozi, O., Weinberger, A., Biemans, H. J. A., Mulder, M., & Chizari, M. (2012). Argumentation-based computer supported collaborative learning (ABCSCL): A synthesis of 15 years of research. Educational Research Review, 7(2), 79–106. doi:10.1016/j.edurev.2011.11.006.

    Article  Google Scholar 

  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020. doi:10.1002/tea.20035.

    Article  Google Scholar 

  • Partnership for 21st Century Skills (P21). (2009). Framework for 21st Century Learning. http://www.p21.org/storage/documents/1.__p21_framework_2-pager.pdf.

  • Pedersen, S., & Liu, M. (2002). The transfer of problem-solving skills from a problem-based learning environment: The effect of modeling an expert’s cognitive processes. Journal of Research on Technology in Education, 35(2), 303–320.

    Article  Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca, L. (1958). La nouvelle rhétorique: Traité de l’argumentation [The new rhetoric: Treatise on argumentation] (Vols. 1–2). Paris: Presses Universitaires de France.

    Google Scholar 

  • Piaget, J. (1985). The equilibration of cognitive structures. Chicago: University of Chicago Press.

    Google Scholar 

  • Platz, J. (2007). How do you turn STEM into STEAM? Add the arts! http://www.oaae.net/en/resources/educator/stem-to-steam.

  • Popper, K. (1999). All life is problem solving. London: Routledge.

    Google Scholar 

  • President’s Council of Advisors on Science and Technology (PCAST). (2010). Prepare and inspire: K-12 education in science, technology, engineering, and math (STEM) for America’s future. http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf.

  • Prins, G. T., Bulte, A. M. W., & Pilot, A. (2011). Evaluation of a design principle for fostering students’ epistemological views on models and modelling using authentic practices as contexts for learning in chemistry education. International Journal of Science Education, 33(11), 1539–1569. doi:10.1080/09500693.2010.519405.

    Article  Google Scholar 

  • Puntambekar, S., & Hubscher, R. (2002). Scaffolding in complex learning environments: What we have gained and what we have missed. Educational Psychologist, 40, 1–12.

    Article  Google Scholar 

  • Raes, A., Schellens, T., & De Wever, B. (2010). The impact of web-based collaborative inquiry for science learning in secondary education. In Proceedings of the 9th International Conference of the Learning Sciences (Vol. 1, pp. 736–741). Chicago: International Society of the Learning Sciences. http://dl.acm.org/citation.cfm?id=1854360.1854454.

  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13(3), 273–304.

    Article  Google Scholar 

  • Ricco, R., Schuyten Pierce, S., & Medinilla, C. (2009). Epistemic beliefs and achievement motivation in early adolescence. The Journal of Early Adolescence, 30(2), 305–340. doi:10.1177/0272431609333299.

    Article  Google Scholar 

  • Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112–138. doi:10.1002/tea.20042.

    Article  Google Scholar 

  • Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391. doi:10.1007/s11165-006-9030-9.

    Article  Google Scholar 

  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634–656. doi:10.1002/sce.20065.

    Article  Google Scholar 

  • Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372. doi:10.1002/sce.10130.

    Article  Google Scholar 

  • Saunders, K. J., & Rennie, L. J. (2013). A pedagogical model for ethical inquiry into socioscientific issues in science. Research in Science Education, 43(1), 253–274.

    Article  Google Scholar 

  • Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205. doi:10.1207/s1532690xci2302_1.

    Article  Google Scholar 

  • Sneider, C. (2012). Core ideas of engineering and technology. Science Teacher, 79(1), 32–36.

    Google Scholar 

  • Swanson, G. (1994). Graphic design education as a liberal art: Design and knowledge in the university and the “real world.”. Design Issues, 10(1), 53–63. doi:10.2307/1511656.

    Article  Google Scholar 

  • Valanides, N., & Angeli, C. (2008). An exploratory study about the role of epistemological beliefs and dispositions on learners’ thinking about an ill-defined issue in solo and duo problem-solving contexts. In M. S. Khine (Ed.), Knowing, knowledge and beliefs (pp. 197–218). Springer. http://link.springer.com/chapter/10.1007/978-1-4020-6596-59.

  • Vande Zande, R. (2010). Teaching design education for cultural, pedagogical, and economic aims. Studies in Art Education, 51(3), 248–261.

    Google Scholar 

  • Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387–1410. doi:10.1080/09500690601068095.

    Article  Google Scholar 

  • Windschitl, M. (2004). Folk theories of “inquiry:” How preservice teachers reproduce the discourse and practices of an atheoretical scientific method. Journal of Research in Science Teaching, 41(5), 481–512. doi:10.1002/tea.20010.

    Article  Google Scholar 

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100.

    Article  Google Scholar 

  • Wu, H.-K., & Wu, C.-L. (2010). Exploring the development of fifth graders’ practical epistemologies and explanation skills in inquiry-based learning classrooms. Research in Science Education, 41(3), 319–340. doi:10.1007/s11165-010-9167-4.

    Article  Google Scholar 

  • Yoon, S. A. (2011). Using social network graphs as visualization tools to influence peer selection decision-making strategies to access information about complex socioscientific issues. Journal of the Learning Sciences, 20(4), 549–588. doi:10.1080/10508406.2011.563655.

    Article  Google Scholar 

  • Zhang, M., & Quintana, C. (2012). Scaffolding strategies for supporting middle school students’ online inquiry processes. Computers & Education, 58(1), 181–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyue Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gu, J., Belland, B. (2015). Preparing Students with 21st Century Skills: Integrating Scientific Knowledge, Skills, and Epistemic Beliefs in Middle School Science Curricula. In: Ge, X., Ifenthaler, D., Spector, J. (eds) Emerging Technologies for STEAM Education. Educational Communications and Technology: Issues and Innovations. Springer, Cham. https://doi.org/10.1007/978-3-319-02573-5_3

Download citation

Publish with us

Policies and ethics