Skip to main content

Simulation of Cardiac Cell-Seeded Membranes Using the Edge-Based Smoothed FEM

  • Chapter
  • First Online:
Shell and Membrane Theories in Mechanics and Biology

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 45))

Abstract

We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More exactly \(T\) is the tension in case that the muscle is at rest. Including a history of cross-bridge bindings one could establish an integral equation for the computation of \(T\).

References

  1. Liu, G., Nguyen, T.: Smoothed Finite Element Methods. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  2. Cui, X., Liu, G., Li, G., Zhang, G., Sun, G.: Analysis of elastic-plastic problems using edge-based smoothed finite element method. Int. J. Press. Vessel. Pip. 86(10), 711–718 (2009)

    Article  Google Scholar 

  3. Dai, K., Liu, G.: Free and forced vibration analysis using the smoothed finite element method (SFEM). J. Sound Vib. 301(3–5), 803–820 (2007)

    Article  Google Scholar 

  4. Dai, K., Liu, G., Nguyen, T.: An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elem. Anal. Des. 43(11–12), 847–860 (2007)

    Article  MathSciNet  Google Scholar 

  5. Liu, G., Nguyen, T., Dai, K., Lam, K.: Theoretical aspects of the smoothed finite element method (SFEM). Int. J. Numer. Meth. Eng. 71(8), 902–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, G., Nguyen, T., Nguyen-Xuan, H., Lam, K.: A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput. Struct. 87(1–2), 14–26 (2009)

    Article  Google Scholar 

  7. Cui, X., Liu, G., Li, G., Zhang, G., Zhang, G.: Analysis of plates and shells using an edge-based smoothed finite element method. Comput. Mech. 45(2–3), 141–156 (2009b)

    MathSciNet  Google Scholar 

  8. Frotscher, R., Staat, M.: Effectiveness of the edge-based smoothed finite element method applied to soft biological tissues. In: Holzapfel, G., Ogden, R. (eds.) 8th European Solid Mechanics Conference, Verlag d. Technischen Universität Graz, Graz, Austria (2012)

    Google Scholar 

  9. Nguyen-Xuan, H., Liu, G., Thai-Hoang, C., Nguyen-Thoi, T.: An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Comput. Method Appl. Mech. 199(9–12), 471–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bordas, S., Rabczuk, T., Hung, N.X., Nguyen, V., Natarajan, S., Bog, T., Hiep, N.: Strain smoothing in FEM and XFEM. Comput. Struct. 88(23–24), 1419–1443 (2010)

    Article  Google Scholar 

  11. Chen, L., Liu, G., Jiang, Y., Zeng, K., Zhang, J.: A singular edge-based smoothed finite element method (ES-FEM) for crack analyses in anisotropic media. Eng. Fract. Mech. 78(1), 85–109 (2011)

    Article  Google Scholar 

  12. Liu, G., Nourbakhshnia, N., Zhang, Y.: A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems. Eng. Fract. Mech. 78(6), 863–876 (2011)

    Article  Google Scholar 

  13. Nix, Y., Frotscher, R., Staat, M.: Implementation of the edge-based smoothed extended finite element method. In: Eberhardsteiner, F., Böhm, J., Rammerstorfer, H. (eds.) CD-ROM Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering. Austria, Vienna (2012)

    Google Scholar 

  14. Nguyen-Thoi, T., Liu, G., Lam, K., Zhang, G.: A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int. J. Numer. Meth. Eng. 78(3), 324–353 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bletzinger, K., Bischoff, M., Ramm, E.: A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput. Struct. 75(3), 321–334 (2000)

    Article  Google Scholar 

  16. Linder, P., Trzewik, J., Rüffer, M., Artmann, G., Digel, I., Kurz, R., Temiz-Artmann, A.: Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes. Méd. Biol. Eng. Comput. 48(1), 59–65 (2010)

    Article  Google Scholar 

  17. Trzewik, J.: Experimental analysis of biaxial mechanical tension in cell monolayers and cultured three-dimensional tissues. Ph.D. thesis, Fakultät Informatik und Automatisierung, Technische Universität Ilmenau (2008)

    Google Scholar 

  18. Trzewik, J., Temiz-Artmann, A., Linder, P., Demirci, T., Digel, I., Artmann, G.: Evaluation of lateral mechanical tension in thin-film tissue constructs. Ann. Biomed. Eng. 32(9), 1243–1251 (2004)

    Article  Google Scholar 

  19. Hunter, P., McCulloch, A., ter Keurs, H.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3), 289–331 (1998)

    Article  Google Scholar 

  20. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)

    Google Scholar 

  21. Fenton, F., Cherry, E.: Models of cardiac cell. Scholarpedia. http://www.scholarpedia.org/article/Models_of_cardiac_cell (2008)

  22. Nickerson, D.: Cardiac electro-mechanics: From cellml to the whole heart. Ph.D. thesis, Bioengineering, University of Auckland (2004)

    Google Scholar 

  23. McAllister, R., Noble, D., Tsien, R.: Reconstruction of the electrical activity of cardiac purkinje fibres. J. Physiol. 251, 1–59 (1975)

    Google Scholar 

  24. Obiol-Pardo, C., Gomis-Tena, J., Sanz, F., Saiz, J., Pastor, M.: A multiscale simulation system for the prediction of drug-induced cardiotoxicity. J. Chem. Inf. Model. 51(2), 483–492 (2011)

    Article  Google Scholar 

  25. Beeler, B., Reuter, H.: Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268, 177–210 (1977)

    Google Scholar 

  26. Niederer, S., Hunter, P., Smith, N.: A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90(5), 1697–1722 (2006)

    Article  Google Scholar 

  27. van der Velden, J., Klein, L., van der Bijl, M., Huybregts, M., Stooker, W., Witkop, J., Stienen, G.: Force production in mechanically isolated cardiac myocytes from human ventricular muscle tissue. Cardiovasc. Res. 38(2), 414–423 (1998)

    Article  Google Scholar 

  28. van der Velden, J., Papp, Z., Zaremba, R., Boontje, N., de Jong, J., Owen, V., Stienen, G.: Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc. Res. 57(1), 37–47 (2003)

    Article  Google Scholar 

  29. Hairer, E., Wanner, G.: Solving ordinary differential equations. Stiff and Differential-Algebraic Problems, vol. II. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  30. Frotscher, R., Koch, J.P., Raatschen, H.J., Staat, M.: Evaluation of a computational model for drug action on cardiac tissue. In: Oñate, E., Oliver, J., Huerta, A. (eds.) Proceedings 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI). Barcelona, Spain (2014)

    Google Scholar 

  31. Weise, L., Panfilov, A.: A discrete electromechanical model for human cardiac tissue: Effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics. PloS One 8(3), e59317 (2013)

    Article  Google Scholar 

  32. ten Tusscher, K., Noble, D., Noble, P., Panfilov, A.: A model for human ventricular tissue. Am. J. Physiol. Heart Circ. 286(4), H1573–H1589 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The first two authors have partially been financed by the project Cardiakytos and gratefully thank.

figure a

Europe—Investment in our future

The project has been selected from the operational program for NRW in ‘Ziel 2 Regionale Wettbewerbsfähigkeit und Beschäftigung’ 2007–2013 which is co-financed by EFRE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Staat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frotscher, R., Goßmann, M., Raatschen, HJ., Temiz-Artmann, A., Staat, M. (2015). Simulation of Cardiac Cell-Seeded Membranes Using the Edge-Based Smoothed FEM. In: Altenbach, H., Mikhasev, G. (eds) Shell and Membrane Theories in Mechanics and Biology. Advanced Structured Materials, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-02535-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02535-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02534-6

  • Online ISBN: 978-3-319-02535-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics