Skip to main content

Transporting Concentrates and Tailings

  • Chapter
  • First Online:
  • 2381 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 105))

Abstract

Ore, water and mineral pulps are transported among the different operational units of a mineral processing plant. Water is pumped through pipelines to the grinding plant to be mixed with the ore to form the pulp that constitutes the mill feed. The mill overflow is again mixed with water to adjust the solid content and is sent through pipes to be classified in hydrocyclones. Cyclone underflow with coarse material is sent back to the mill and the overflow goes to the flotation plant. Transport in the flotation plant and between flotation sections and solid–liquid separation units is through pipelines, and finally flotation tailings are transported to tailing ponds through pipelines or channels. This chapter of the book is related to the transport of pulps in mineral processing plants. Starting from the continuity equation and the equation of motion for a continuous medium, the expression for the pressure drop during fluid flow in a tube is obtained. Newtonian fluid behavior is used to treat cases of laminar and turbulent flows. The concepts of friction factor and Reynolds number are introduced and the distribution of velocity, flow rate and pressure drop in a tube are obtained. The transport of suspensions in pipelines is then treated, defining the different regimes separated by the limiting deposit velocity. First, the flow of heterogeneous suspensions is introduced and the form to calculate head loss is presented. Next, homogeneous suspensions modeled by different rheological approaches are discussed. Finally equations for the transport of suspensions in open channel are dealt with.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Babcock, H.A. (1968). Heterogeneous flow of heterogeneous solids. International Symposium on solid-liquid flow in pipes, University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Bain, A. G., & Bonnington, S. T. (1970). The hydraulic transport of solids by pipelines (1st ed., pp. 125–148). Oxford: Pergamon Press.

    Google Scholar 

  • Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). Dynamics of polymeric liquids: Vol I, fluid dynamics (2nd ed.). New York: Wiley.

    Google Scholar 

  • Cairns, R. C., Lawther, K. R., & Turner, K. S. (1960). Flow characteristics of dilute small particles suspensions. British Chemical Engineering, 5, 849–856.

    Google Scholar 

  • Chhabra, R. P., & Richardson, J. F. (1999). Non-Newtonian flow in the process industries. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Charles, M.E. (1970). Transport of solids by pipelines. In: Proceedings of Hydrotransport-1, (pp. 25–26). Warwick: British Hydromechanics Research Association, Paper A3.

    Google Scholar 

  • Charles, M. E. (1979). Transport of solids by pipelines, Proceedings of Hyrotransport-1 BHRA, paper A3, 25–26.

    Google Scholar 

  • Chien, A. F. (1994). Critical velocity of sand-fluid mixtures in horizontal pipe flow. ASME FED, 189, 231–246.

    Google Scholar 

  • Concha, F. (2008). Settling velocities of particulate systems 15: Velocities in turbulent Newtonian flows. International Journal of Mineral Processing, 88, 89–93.

    Article  Google Scholar 

  • Concha, F. & Almendra, E. R. (1979a). Seettling Velocities of Particulate Systems, 1. Settling Velocity of individual spherical. International Journal of Mineral Processing, 5, 349–367.

    Google Scholar 

  • Concha, F. & Almendra, E. R. (1979b). Seettling Velocities of Particulate Systems 2: Settling of Velocities of Suspensions of Spherical Particles. International Journal of Mineral Processing, 6, 31–41.

    Google Scholar 

  • Condolios, E., & Chapus, E. E. (1963). Designing solids handling pipelines. Chemical Engineering, 70, 131–138.

    Google Scholar 

  • Condolios, E., & Chapus, E. E. (1967). New trends in solid pipelines. Chemical Engineering, 74, 131–138.

    Google Scholar 

  • Domínguez, B., SouyrisR., & Harambour, F. (1989). Caracterización global del fenómeno de la depositación de los sólidos en el flujo sólido líquido en Channeles. In ninth Congreso Nacional de Hidráulica (pp. 19–30). Santiago.

    Google Scholar 

  • Domínguez, E. (1986). Análisis de los parámetros característicos de flujo sólido-líquido en Channeles. Civil Engineer Thesis, Pontificia Universida católica de Chile.

    Google Scholar 

  • Durand, R. (1953). Basic relationships of the transportation of solids in pipes; Experimental research. In: Proceedings of Minnesota International Hydraulics Convention, pp. 89–103.

    Google Scholar 

  • Faddick, R. R. (1985). Slurry transport course. Colorado School of Mines: Department of Civil Engineering.

    Google Scholar 

  • Faddick, R. R. (1986). Slurry Flume design, Hydrotransport 10, BHRA Fluid Engineering, (pp. 143–147).

    Google Scholar 

  • Gillies, R. G., & Shook, C. A. (1991). A deposition velocity correlation for water slurries. Canadian Journal of Chemical Engineering, 69, 1225–1227.

    Article  Google Scholar 

  • Govier, G. W. (1961). The flow of complex solid-liquid mixtures. Journal of Engineering, 44, 50–57.

    Google Scholar 

  • Govier, G. W., & Aziz, K. (1961). The flow of complex solid-liquid mixtures. Engineering Journal (Canada), 44, 50–57.

    Google Scholar 

  • Idelchick, I. E., Malyavskaya, G. R. O. G. & Fried, E. (1986). Handbook of Hydraulic Resistance, (2nd ed.). Hemisphere Pub. Co., New York.

    Google Scholar 

  • Metzner, A. B., & Reed, J. C. (1959). AIChE Journal, 1, 434.

    Google Scholar 

  • Newitt, D. M., Richardson, J. F., & Gliddon, B. J. (1955). Hydraulic conveying of solids in horizontal pipes. Transactions IChE London, 33, 93–110.

    Google Scholar 

  • Nikuradse, J. (1933). Srömungsgesetze in rauhen Röhren.

    Google Scholar 

  • Oroskar, A. R., & Turian, R. M. (1980). The critical velocity in pipeline flow of slurries. AIChE Journal, 26(4), 550–558.

    Article  Google Scholar 

  • Schulz, L. (1962). Experiences of the Soviet Union in hydromechanization. Bergbautechnik, 12, 353–361.

    Google Scholar 

  • Shook, C. A. (1969). Pipelining solids: The design of short-distance pipelines, Symposium on pipeline transport of solids, Canadian Society for Chemical Engineering.

    Google Scholar 

  • Sinclair, C. G. (1962). The limit deposit velocity of heterogeneous suspensions, Proceedings of Symposium on interaction between fluid and particles, (pp. A68–A76). London: IChE.

    Google Scholar 

  • Spells, K. E. (1955). Correlations for use in transport of aqueous suspensions of fine solids through pipes. Transactions IChE London, 33, 79–82.

    Google Scholar 

  • Tamburrino, A. (2000). Class Notes on Hydraulic Solid Transport. Department of Civil Engineering, University of Chile (in Spanish).

    Google Scholar 

  • Thomas, A. D. (1979). Predicting the deposit velocity for horizontal turbulent pipe flow of slurries. International Journal Multiphase flow, 5, 113–129.

    Article  Google Scholar 

  • Wasp, E. J., Kenney, J. P., & Gandhi, R. L. (1977). Solid-liquid flow slurry pipeline transportation, Trans. Tech. Pub., (1st ed.), Clausthal.

    Google Scholar 

  • Wilson, K. C. (1979). Deposition limit nomograms for particles of various densities in pipeline flow. In Proceedings of Hydrotransport-6 (pp. 1–12). Warwick: British Hydromechanics Research Association.

    Google Scholar 

  • Yufin, A. P., & Lopasin, N. A. (1966). A summary and comparison of known correlations of critical velocity of solid-water mixtures ans some aspects of the optimization of pipelines. In Proceedings Hydrotransport-2, Warwick: British Hydromechanics Research Association.

    Google Scholar 

  • Zandi, I., & Govatos, G. (1967). Heterogeneous flow of solids in pipelines. Journal of Hyd. Division, ASCE, 93(3), 145–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Concha A. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Concha A., F. (2014). Transporting Concentrates and Tailings. In: Solid-Liquid Separation in the Mining Industry. Fluid Mechanics and Its Applications, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-02484-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02484-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02483-7

  • Online ISBN: 978-3-319-02484-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics