Diffusion Propagator Estimation Using Radial Basis Functions

  • Yogesh Rathi
  • Marc Niethammer
  • Frederik Laun
  • Kawin Setsompop
  • Oleg Michailovich
  • P. Ellen Grant
  • C.-F. Westin
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

The average diffusion propagator (ADP) obtained from diffusion MRI (dMRI) data encapsulates important structural properties of the underlying tissue. Measures derived from the ADP can be potentially used as markers of tissue integrity in characterizing several mental disorders. Thus, accurate estimation of the ADP is imperative for its use in neuroimaging studies. In this work, we propose a simple method for estimating the ADP by representing the acquired diffusion signal in the entire q-space using radial basis functions (RBF). We demonstrate our technique using two different RBF’s (generalized inverse multiquadric and Gaussian) and derive analytical expressions for the corresponding ADP’s. We also derive expressions for computing the solid angle orientation distribution function (ODF) for each of the RBF’s. Estimation of the weights of the RBF’s is done by enforcing positivity constraint on the estimated ADP or ODF. Finally, we validate our method on data obtained from a physical phantom with known fiber crossing of 45 degrees and also show comparison with the solid spherical harmonics method of Descoteaux et al. (Med Image Anal 2010). We also demonstrate our method on in-vivo human brain data.

Notes

Acknowledgements

This work has been supported by NIH grants: R01MH097979 (YR), R01MH074794 (CFW), P41RR013218, P41EB015902 and Swedish VR grant 2012-3682(CFW).

References

  1. 1.
    Abramowitz, M.E., et al.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Dover, New York (1964)MATHGoogle Scholar
  2. 2.
    Assaf, Y., Freidlin, R., Rohde, G., Basser, P.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004)CrossRefGoogle Scholar
  3. 3.
    Assemlal, H., Tschumperlé, D., Brun, L.: Efficient computation of pdf-based characteristics from diffusion mr signal. In: MICCAI 2008, New York, pp. 70–78 (2008)Google Scholar
  4. 4.
    Barmpoutis, A., Vemuri, B., Forder, J.: Fast displacement probability profile approximation from hardi using 4th-order tensors. In: ISBI, Paris, pp. 911–914 (2008)Google Scholar
  5. 5.
    Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge university press, Cambridge/New York (2003)CrossRefGoogle Scholar
  6. 6.
    Cohen, Y., Assaf, Y.: High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues – a technical review. NMR Biomed. 15(7–8), 516–542 (2002)CrossRefGoogle Scholar
  7. 7.
    Descoteaux, M., Deriche, R., Bihan, D., Mangin, J., Poupon, C.: Multiple q-shell diffusion propagator imaging. Med. Image Anal. 15(4), 603–621 (2011)CrossRefGoogle Scholar
  8. 8.
    Ghosh, A., Deriche, R.: Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor. In: ISBI, Rotterdam, pp. 1105–1108 (2010)Google Scholar
  9. 9.
    Jensen, J., Helpern, J., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6), 1432–1440 (2005)CrossRefGoogle Scholar
  10. 10.
    Merlet, S., Caruyer, E., Deriche, R.: Parametric dictionary learning for modeling eap and odf in diffusion MRI. In: MICCAI, Nice, pp. 10–17 (2012)Google Scholar
  11. 11.
    Moussavi-Biugui, A., Stieltjes, B., Fritzsche, K., Semmler, W., Laun, F.B.: Novel spherical phantoms for q-ball imaging under in vivo conditions. Magn. Reson. Med. 65(1), 190–194 (2011)CrossRefGoogle Scholar
  12. 12.
    Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (map) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78(2), 16–32 (2013)CrossRefGoogle Scholar
  13. 13.
    Piessens, R.: The hankel transform. In: Poularikas, A.D. (ed.) The Transforms and Applications Handbook, 2nd edn., pp. 9–1. CRC, Boca Raton (2000)Google Scholar
  14. 14.
    Rathi, Y., Michailovich, O., Setsompop, K., Bouix, S., Shenton, M., Westin, C.F.: Sparse multi-shell diffusion imaging. In: MICCAI, Toronto, pp. 58–65 (2011)Google Scholar
  15. 15.
    Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2–3), 193–210 (1999)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Tuch, D., Reese, T., Wiegell, M., Wedeen, V.: Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003)CrossRefGoogle Scholar
  17. 17.
    Wedeen, V., Hagmann, P., Tseng, W., Reese, T., Weisskoff, R.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)CrossRefGoogle Scholar
  18. 18.
    Wu, Y., Alexander, A.: Hybrid diffusion imaging. NeuroImage 36(3), 617–629 (2007)CrossRefGoogle Scholar
  19. 19.
    Ye, W., Portnoy, S., Entezari, A., Vemuri, B.C., Blackband, S.J.: Box spline based 3d tomographic reconstruction of diffusion propagators from MRI data. In: ISBI, Chicago, pp. 397–400. IEEE (2011)Google Scholar
  20. 20.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yogesh Rathi
    • 1
  • Marc Niethammer
    • 2
  • Frederik Laun
    • 3
  • Kawin Setsompop
    • 4
  • Oleg Michailovich
    • 5
  • P. Ellen Grant
    • 6
  • C.-F. Westin
    • 1
  1. 1.Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.University of North CarolinaChapel HillUSA
  3. 3.German Cancer Research CenterHeidelbergGermany
  4. 4.Massachusetts General Hospital, Harvard Medical SchoolBostonUSA
  5. 5.University of WaterlooWaterlooCanada
  6. 6.Boston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations