Global Changes in the Connectome in Autism Spectrum Disorders

  • Caspar J. Goch
  • Basak Oztan
  • Bram Stieltjes
  • Romy Henze
  • Jan Hering
  • Luise Poustka
  • Hans-Peter Meinzer
  • Bülent Yener
  • Klaus H. Maier-Hein
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

There is an increasing interest in connectomics as means to characterize the brain both in healthy controls and in disease. Connectomics strongly relies on graph theory to derive quantitative network related parameters from data. So far only a limited range of possible parameters have been explored in the literature. In this work, we utilize a broad range of global statistic measures combined with supervised machine learning and apply it to a group of 16 children with autism spectrum disorders (ASD) and 16 typically developed (TD) children, which have been matched for age, gender and IQ. We demonstrate that 86.7 % accuracy is achieved in distinguishing between ASD patients and the TD control using highly discriminative graph features in a supervised machine learning setting.

Keywords

Connectomics Network analysis Diffusion imaging Autism Classification 

References

  1. 1.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)CrossRefGoogle Scholar
  2. 2.
    Travers, B.G., Adluru, N., Ennis, C., Tromp, D.P.M., Destiche, D., Doran, S., et al.: Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 5, 289–313 (2012)CrossRefGoogle Scholar
  3. 3.
    Lewis, W.W., Sahin, M., Scherrer, B., Peters, J.M., Suarez, R.O., Vogel-Farley, V.K., et al.: Impaired language pathways in tuberous sclerosis complex patients with autism spectrum disorders. Cereb. Cortex 23, 1526–1532 (2012)CrossRefGoogle Scholar
  4. 4.
    Griffa, A., Baumann, P.S., Thiran, J.-P., Hagmann, P.: Structural connectomics in brain diseases. NeuroImage 80, 515–526 (2013)CrossRefGoogle Scholar
  5. 5.
    Li, H., Xue, Z., Ellmore, T.M., Frye, R.E., Wong, S.T.C.: Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders. Hum. Brain Mapp. doi:10.1002/hbm.22185 (2012)Google Scholar
  6. 6.
    Goch, C.J., Stieltjes, B., Henze, R., Hering, J., Meinzer, H.P., Fritzsche, K.H.: Reduced centrality of Wernicke’s area in autism. In: Proceedings of SPIE Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging, Lake Buena Vista, 2013, vol. 8672, pp. 867223-1–867223-6Google Scholar
  7. 7.
    Demir, C., Gultekin, S., Yener, B.: Learning the topological properties of brain tumors. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(3), 262–270 (2005)CrossRefGoogle Scholar
  8. 8.
    Bilgin, C., Demir, C., Nagi, C., Yener, B.: Cell-graph mining for breast tissue modeling and classification. In: Proceedings of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, pp. 5311–5314. IEEE (2007)Google Scholar
  9. 9.
    Bilgin, C., Bullough, P., Plopper, G., Yener, B.: ECM-aware cell-graph mining for bone tissue modeling and classification. Data Min. Knowl. Discov. 20(3), 416–438 (2010)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Oztan, B., Shubert, K., Bjornsson, C., Plopper, G., Yener, B.: Biologically-driven cell-graphs for breast tissue grading. In: Proceedings of IEEE Symposium on Biomedical Imaging, San Francisco, 2013, pp. 141–144Google Scholar
  11. 11.
    Lund, A.W., Bilgin, C.C., Hasan, M.A., McKeen, L.M., Stegemann, J.P., Yener, B., Zaki, M.J., Plopper, G.E.: Quantification of spatial parameters in 3D cellular constructs using graph theory. J. Biomed. Biotechnol. 2009, 1–16 (2009)CrossRefGoogle Scholar
  12. 12.
    Bilgin, C.C., Lund, A.W., Can, A., Plopper, G.E., Yener, B.: Quantification of three-dimensional cell-mediated collagen remodeling using graph theory. PloS one 5(9), 1–12 (2010)CrossRefGoogle Scholar
  13. 13.
    Dhulekar, N., Bange, L., Baskaran, A., Yuan, D., Oztan, B., Yener, B., Ray, S., Larsen, M.: A novel dynamic graph-based computational model for predicting salivary gland branching morphogenesis. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Philadelphia, 2012, pp. 1–8Google Scholar
  14. 14.
    Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., et al.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14(1), 11–22 (2004)CrossRefGoogle Scholar
  15. 15.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith S.M.: FSL. NeuroImage 62(2), 782–790 (2012)CrossRefGoogle Scholar
  16. 16.
    Fritzsche, K.H., Neher, P.F., Reicht, I., van Bruggen, T., Goch, C., Reisert, M., et al.: MITK diffusion imaging. Methods Inf. Med. 51, 441–448 (2012)CrossRefGoogle Scholar
  17. 17.
    Neher, P.F., Stieltjes, B., Reisert, M., Reicht, I., Meinzer, H.P., Fritzsche, K.H.: MITK global tractography. In: SPIE Medical Imaging 2012: Image Processing, San Diego, 2012Google Scholar
  18. 18.
    Yang, Z.R.: Biological applications of support vector machines. Brief. Bioinform. 5(4), 328–338 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Caspar J. Goch
    • 1
  • Basak Oztan
    • 2
  • Bram Stieltjes
    • 3
  • Romy Henze
    • 3
    • 4
  • Jan Hering
    • 1
  • Luise Poustka
    • 5
  • Hans-Peter Meinzer
    • 1
  • Bülent Yener
    • 2
  • Klaus H. Maier-Hein
    • 1
    • 3
  1. 1.Medical and Biological InformaticsGerman Cancer Research CenterHeidelbergGermany
  2. 2.Computer Science DepartmentRensselar Polytechnic InstituteTroyUSA
  3. 3.Quantitative Imaging-based Disease CharacterizationGerman Cancer Research CenterHeidelbergGermany
  4. 4.Child and Adolescent Psychiatry, Section Disorders of Personality DevelopmentHeidelberg University HospitalHeidelbergGermany
  5. 5.Department of Child and Adolescent Psychiatry and PsychotherapyCentral Institute of Mental HealthMannheimGermany

Personalised recommendations