Advertisement

Disrupted Brain Connectivity in Alzheimer’s Disease: Effects of Network Thresholding

  • Madelaine Daianu
  • Emily L. Dennis
  • Neda Jahanshad
  • Talia M. Nir
  • Arthur W. Toga
  • Clifford R. JackJr.
  • Michael W. Weiner
  • Paul M. Thompson
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Diffusion imaging is accelerating our understanding of the human brain. As brain connectivity analyses become more popular, it is vital to develop reliable metrics of the brain’s connections, and their network properties, to allow statistical study of factors that influence brain ‘wiring’. Here we chart differences in brain structural networks between normal aging and Alzheimer’s disease (AD) using 3-T whole-brain diffusion-weighted images (DWI) from 66 subjects (22 AD/44 normal elderly). We performed whole-brain tractography based on the orientation distribution functions. Connectivity matrices were compiled, representing the proportion of detected fibers interconnecting 68 cortical regions. We found clear disease effects on anatomical network topology in the structural backbone – the so-called ‘k-core’ – of the anatomical network, defined by varying the nodal degree threshold, k. However, the thresholding of the structural networks – based on their nodal degree – affected the pattern and interpretation of network differences discovered between patients and controls.

Keywords

Brain connectivity k-core Threshold DTI Tractography Graph theory 

References

  1. 1.
    Clerx, P., et al.: New MRI markers for Alzheimer’s disease: a meta-analysis of diffusion tensor imaging and a comparison with medial temporal lobe measurements. J Alzheimer’s Dis. 29(2), 405–429 (2012)Google Scholar
  2. 2.
    Lee, H., et al.: Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imaging. 31(12), 2267–2677 (2012)Google Scholar
  3. 3.
    Daianu, M., et al.: Breakdown of brain connectivity between normal aging and Alzheimer’s disease: a structural k-core network analysis. Brain Connect. 3(4), 407–422 (2013)Google Scholar
  4. 4.
    Hagmann, P., et al.: Mapping the structural core of the human cerebral cortex. PLoS Biol. 6(7), 1479–1493 (2008)CrossRefGoogle Scholar
  5. 5.
    Aganj, I., et al.: A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography. Med. Image Anal. 15(4), 414–425 (2011)CrossRefGoogle Scholar
  6. 6.
    Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)CrossRefGoogle Scholar
  7. 7.
    Fischl, B., et al.: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22 (2004)CrossRefGoogle Scholar
  8. 8.
    Sporns, O.: Networks of the Brain, pp. 5–31. MIT Press, Cambridge (2011)Google Scholar
  9. 9.
    Alvarez-Hamelin, J.I., et al.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Weiss, Y., Scholkopf, B., Platt, J. (eds.) Proceedings: Advances in Neural Information Processing Systems, vol. 18, pp. 41–50. MIT Press, Cambridge, MA (2006)Google Scholar
  10. 10.
    Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T.: Alzheimer’s disease neuroimaging initiative. Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput. Biol. 6(11), e1001006 (2010)Google Scholar
  11. 11.
    Wijk, B.C.M., et al.: Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5(10), e13701 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Madelaine Daianu
    • 1
    • 2
  • Emily L. Dennis
    • 1
    • 2
  • Neda Jahanshad
    • 1
    • 2
  • Talia M. Nir
    • 2
  • Arthur W. Toga
    • 2
  • Clifford R. JackJr.
    • 3
  • Michael W. Weiner
    • 4
    • 5
  • Paul M. Thompson
    • 1
    • 2
  1. 1.Imaging Genetics CenterUCLA School of MedicineLos AngelesUSA
  2. 2.Imaging Genetics Center, Institute for Neuroimaging & InformaticsUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of RadiologyMayo ClinicRochesterUSA
  4. 4.Department of Radiology, Medicine, and PsychiatryUniversity of California San FranciscoSan FranciscoUSA
  5. 5.Department of Veterans Affairs Medical CenterSan FranciscoUSA

Personalised recommendations