Estimating Uncertainty in White Matter Tractography Using Wild Non-local Bootstrap

  • Pew-Thian Yap
  • Hongyu An
  • Yasheng Chen
  • Dinggang Shen
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Statistics derived from diffusion MRI data, especially those related to tractography, are often highly non-linear and non-Gaussian with unknown complex distributions. In estimating the sampling distributions of these statistics, many existing techniques are limited by their reliance on models that assume normality and that are yet to be verified in complex situations where various noise sources, such as physiologic variation, scanner instability, and imaging noise, might be simultaneously present. In complex conditions as such, a viable solution is the bootstrap, which due to its distribution-independent nature is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this paper, we will examine whether a new bootstrap scheme, called the wild non-local bootstrap (W-NLB) , is effective in estimating the uncertainty in tractography data. In contrast to the residual or wild bootstrap , which relies on a predetermined data model, or the repetition bootstrap , which requires repeated signal measurements, W-NLB does not assume a predetermined form of data structure and obviates the need for time-consuming multiple acquisitions. W-NLB hinges on the observation that local imaging information recurs in the image. This self-similarity implies that imaging information coming from spatially distant (non-local) regions can be exploited for more effective estimation of statistics of interest. In silico evaluations indicate that W-NLB produces distribution estimates that are in closer agreement to those generated using Monte Carlo simulations, compared with the conventional residual bootstrap. Evaluations using in vivo data show that W-NLB produces results that are in agreement with our knowledge on the white matter connection architecture.



This work was supported in part by a UNC start-up fund and NIH grants (EB006733, EB008374, EB009634, MH088520, AG041721, and MH100217).


  1. 1.
    Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64(2), 554–566 (2010)Google Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Chen, B., Hsu, E.W.: Noise removal in magnetic resonance diffusion tensor imaging. Magn. Reson. Med. 54, 393–407 (2005)CrossRefGoogle Scholar
  4. 4.
    Chung, S., Lu, Y., Henry, R.G.: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage 33(2), 531–541 (2006)CrossRefGoogle Scholar
  5. 5.
    Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27, 425–441 (2008)CrossRefGoogle Scholar
  6. 6.
    Davison, A., Hinkley, D.: Bootstrap Methods and Their Application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  7. 7.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability. CRC Press, Boca Raton, Florida (1994)Google Scholar
  8. 8.
    Friman, O., Farnebäck, G., Westin, C.F.: A Bayesian approach for stochastic white matter tractography. IEEE Trans. Med. Imaging 25, 965–977 (2006)CrossRefGoogle Scholar
  9. 9.
    Härdle, W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge (1992)Google Scholar
  10. 10.
    Härdle, W., Müller, M.: Multivariate and semiparametric kernel regression. In: Schimek, M.G. (ed.) Smoothing and Regression: Approaches, Computation, and Application. Wiley, Hoboken (2000)Google Scholar
  11. 11.
    Jbabdi, S., Woolrich, M., Andersson, J., Behrens, T.: A Bayesian framework for global tractography. NeuroImage 37(1), 116–129 (2007)CrossRefGoogle Scholar
  12. 12.
    Jeurissen, B., Leemans, A., Jones, D.K., Tournier, J.D., Sijbers, J.: Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum. Brain Mapp. 32(3), 461–479 (2011)CrossRefGoogle Scholar
  13. 13.
    Jones, D.: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn. Reson. Med. 49(1), 7–12 (2003)CrossRefGoogle Scholar
  14. 14.
    Jones, D.K.: Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans. Med. Imaging 27(9), 1268–1274 (2008)CrossRefGoogle Scholar
  15. 15.
    Jones, D.K., Basser, P.J.: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993 (2004)CrossRefGoogle Scholar
  16. 16.
    Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2), 524–532 (2005)CrossRefGoogle Scholar
  17. 17.
    Mammen, E.: Bootstrap and wild bootstrap for high dimensional linear models. Ann. Stat. 21(1), 255–285 (1993)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Manjón, J., Carbonell-Caballero, J., Lull, J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12(4), 514–523 (2008)CrossRefGoogle Scholar
  19. 19.
    Manjón, J., Coupé, P., Martí-Bonmatí, L., Collins, D., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)CrossRefGoogle Scholar
  20. 20.
    Nadaraya, E.: On estimating regression. Theory Probab. Appl. 9(1), 141–142 (1964)CrossRefGoogle Scholar
  21. 21.
    Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004)CrossRefGoogle Scholar
  22. 22.
    Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., Mori, S.: Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36, 630–644 (2007)CrossRefGoogle Scholar
  23. 23.
    Watson, G.: Smooth regression analysis. Sankhyā Indian J. Stat. A 26(4), 359–372 (1964)MATHGoogle Scholar
  24. 24.
    Whitcher, B., Tuch, D., Wisco, J., Sorensen, A., Wang, L.: Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging. Hum. Brain Mapp. 29(3), 346–362 (2008)CrossRefGoogle Scholar
  25. 25.
    Wu, C.F.J.: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 14(4), 1261–1295 (1986)CrossRefMATHGoogle Scholar
  26. 26.
    Yap, P.T., An, H., Chen, Y., Shen, D.: The non-local bootstrap – estimation of uncertainty in diffusion MRI. In: Information Processing in Medical Imaging (IPMI), Asilomar. LNCS, vol. 7917, 2013, pp. 390–401Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pew-Thian Yap
    • 1
  • Hongyu An
    • 1
  • Yasheng Chen
    • 1
  • Dinggang Shen
    • 1
  1. 1.University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations