Advertisement

Uncertainty in Tractography via Tract Confidence Regions

  • Colin J. Brown
  • Brian G. Booth
  • Ghassan Hamarneh
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Tractography allows us to explore white matter connectivity in diffusion MR images of the brain. However, noise, artifacts and limited resolution introduce uncertainty into the results. We propose a statistical model that allows us to quantify and visualize the uncertainty of a neuronal pathway between any two fixed anatomical regions. Given a sample set of tract curves obtained via tractography, we use our statistical model to define a confidence region that exposes the location and magnitude of tract uncertainty. The approach is validated on both synthetic and real diffusion MR data and is shown to highlight uncertain regions that occur due to noise, fiber crossings, or pathology.

Notes

Acknowledgements

CJB and GH were partially supported by NSERC and BGB by IODE Canada and the Government of Alberta.

References

  1. 1.
    Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Res. Med. 50(5), 1077–1088 (2003)CrossRefGoogle Scholar
  2. 2.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Brown, C.J., Booth, B.G., Hamarneh, G.: k-confidence: assessing uncertainty in tractography using k optimal paths. In: Proceedings of ISBI, San Francisco, 2013, pp. 250–253Google Scholar
  4. 4.
    Catani, M., Howard, R.J., Pajevic, S., Jones, D.K.: Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17(1), 77–94 (2002)CrossRefGoogle Scholar
  5. 5.
    Ciccarelli, O., Parker, G.J.M., Toosy, A.T., Wheeler-Kingshott, C.A.M., Barker, G.J., Boulby, P.A., Miller, D.H., Thompson, A.J.: From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 18(2), 348–359 (2003)CrossRefGoogle Scholar
  6. 6.
    Ciccarelli, O., Catani, M., Johansen-Berg, H., Clark, C., Thompson, A.: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol. 7(8), 715–727 (2008)CrossRefGoogle Scholar
  7. 7.
    Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G., et al.: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Med. Image Anal. 10(5), 786–798 (2006)CrossRefGoogle Scholar
  8. 8.
    Côté, M.-A., Boré, A., Girard, G., Houde, J.-C., Descoteaux, M.: Tractometer: online evaluation system for tractography. In: Proceedings of MICCAI, Nice, 2012, pp. 699–706Google Scholar
  9. 9.
    Draper, N.R., Smith, H.: Applied Regression Analysis, vol. 2. Wiley, New York (1981)MATHGoogle Scholar
  10. 10.
    Dyrby, T.B., Sogaard, L.V., Parker, G.J., Alexander, D.C., Lind, N.M., Baaré, W.F.C., Hay-Schmidt, A., Eriksen, N., Pakkenberg, B., Paulson, O.B., Jelsing, J.: Validation of in vitro probabilistic tractography. NeuroImage 37(4), 1267–1277 (2007)CrossRefGoogle Scholar
  11. 11.
    Friman, O., Farneback, G., Westin, C.F.: A Bayesian approach for stochastic white matter tractography. IEEE Trans. Med. Imaging 25, 965–978 (2006)CrossRefGoogle Scholar
  12. 12.
    Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, London (1981)MATHGoogle Scholar
  13. 13.
    Lazar, M., Alexander, A.L.: Bootstrap white matter tractography (boot-trac). NeuroImage 24(2), 524–532 (2005)CrossRefGoogle Scholar
  14. 14.
    Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F.: Artifacts and pitfalls in diffusion MRI. J. Magn. Reson. Imaging 24(3), 478–488 (2006)CrossRefGoogle Scholar
  15. 15.
    Mahalanobis, P.C.: On the generalized distance in statistics. In: Proceedings of the National Institute of Sciences of India, New Delhi, vol. 2, 1936, pp. 49–55MATHGoogle Scholar
  16. 16.
    Mori, S.: John Hopkins Medical Institute: Laboratory of Brain Anatomical MRI, in vivo human database. http://lbam.med.jhmi.edu/. Accessed Feb 2013
  17. 17.
    Wolsey, L.A.: Integer Programming. Wiley, New York (1998)MATHGoogle Scholar
  18. 18.
    Yamada, K., Sakai, K., Akazawa, K., Yuen, S., Nishimura, T.: MR tractography: a review of its clinical applications. Magn. Reson. Med. Sci. 8(4), 165–174 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Colin J. Brown
    • 1
  • Brian G. Booth
    • 1
  • Ghassan Hamarneh
    • 1
  1. 1.Simon Fraser UniversityBurnabyCanada

Personalised recommendations