Using a Multi-Scale Model for Simulating Pedestrian Behavior

Conference paper

Abstract

In order to model realistic pedestrian crowds, different aspects on different scales have to be taken into account. Besides behavioral aspects, locomotion on short-scale and human navigation on large-scale have to modeled appropriately. In the simulation models existing to date, these two aspects are modeled separately. To overcome the limitations of currently available models, this paper presents a new hybrid multi-scale model, which closely links information between the short-scale and the large-scale layer to improve the navigational behavior.

In the presented hybrid navigation model, graph-based methods using visibility graphs are used to model large-scale way-finding decisions. The pedestrians’ movements between two nodes of the navigation graph (the short-scale) are modeled by means of a dynamic navigation floor field. The floor field is updated dynamically during the runtime of the simulation, explicitly considering other pedestrians for determining the fastest path.

Keywords

Wayfinding Navigation Dynamic navigation fields Dynamic floor fields Cellular automata Visibility graphs Locomotion Route choice Multi-scale model Microscopic pedestrian simulation 

References

  1. 1.
    Höcker M, Berkhahn V, Kneidl A, Borrmann A, Klein W. Graph-based approaches for simulating pedestrian dynamics in building models. In: University College Cork, editor. 8th European Conference on Product & Process Modelling (ECPPM). Cork, Ireland; 2010.Google Scholar
  2. 2.
    Wagoum UK, Seyfried A, Holl S. Modelling dynamic route choice of pedestrians to assess the criticality of building evacuation; 2011.Google Scholar
  3. 3.
    Galea ER, Owen M, Lawrence PJ. The EXODUS Model. Fire Engineers Journal 1996(July):26–30.Google Scholar
  4. 4.
    Sud A, Andersen E, Curtis S, Lin MC, Manocha D. Real-Time Path Planning in Dynamic Virtual Environments Using Multiagent Navigation Graphs. IEEE Transactions on Visualization and Computer Graphics 2008;14:526–538.CrossRefGoogle Scholar
  5. 5.
    Kneidl A, Borrmann A, Hartmann D. Generating sparse navigation graphs for microscopic pedestrian simulation models. In: Hartmann T, de Wilde P, Rafiq Y, editors. Proceedings of the 2011 eg-ice Workshop; 2011.Google Scholar
  6. 6.
    Geraerts BR, Overmars MH. The corridor map method: a general framework for real-time high-quality path planning. Computer Animation and Virtual Worlds 2007;18(2):107.CrossRefGoogle Scholar
  7. 7.
    Kretz T, Hengst S, Rocea V, Perez Arias A, Friedberger S, Hanebeck UD. Calibrating Dynamic Pedestrian Route Choice with an Extended Range Telepresence System. In: 1st IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds; 2011.Google Scholar
  8. 8.
    Chraibi M, Wagoum UK, Schadschneider A, Seyfried A. Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 2011;6:425–42.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Funge J, Tu X, Terzopoulos D. Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co; 1999, p. 29–38.Google Scholar
  10. 10.
    Reynolds C. Steering Behaviors for Autonomous Characters. In: Game Developers Conference; 1999.Google Scholar
  11. 11.
    Rindsfüser G, Klügl F. Agent-Based Pedestrian Simulation: A Case Study of the Bern Railway Station. In: Nagel K, Koll-Schretzenmayr M, editors. disP. Zurich, Switzerland: ETH Zürich; 2007, p. 9–18.Google Scholar
  12. 12.
    Lerner A, Chrysanthou Y, Lischinski D. Crowds by Example. Computer Graphics Forum 2007;26(3):655–64.CrossRefGoogle Scholar
  13. 13.
    Teknomo K. Modeling mobile traffic agents on network simulation. In: Transportation Science Society of the Phillippines 2008 – Proceedings of the 16th Annual of Transportation Science; 2008.Google Scholar
  14. 14.
    Burstedde C, Klauck K, Schadschneider A, Zittartz J. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 2001;295(3–4):507–525.CrossRefMATHGoogle Scholar
  15. 15.
    Klüpfel H. A Cellular Automaton Model for Crowd Movement and Egress Simulation. Dissertation. Duisburg; 2003.Google Scholar
  16. 16.
    Köster G, Hartmann D, Klein W. Microscopic pedestrian simulations: From passenger exchange times to regional evacuation. In: Operations Research - Mastering complexity; 2010.Google Scholar
  17. 17.
    Nishinari K, Kirchner A, Namazi A, Schadschneider A. Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst 2004;E87D:726–32.Google Scholar
  18. 18.
    Varas A, Cornejo MD, Mainemer D, Toledo B, Rogan J, Munoz V et al. Cellular automaton model for evacuation process with obstacles. Physica A: Statistical Mechanics and its Applications 2007;382(2):631–42.CrossRefGoogle Scholar
  19. 19.
    Yamamoto K, Kokubo S, Nishinari K. Simulation for pedestrian dynamics by real-coded cellular automata. Physica A: Statistical Mechanics and its Applications 2007;379(2):654.CrossRefGoogle Scholar
  20. 20.
    Hartmann D. Adaptive pedestrian dynamics based on geodesics. New Journal of Physics 2010;12(4):43032.CrossRefGoogle Scholar
  21. 21.
    Hartmann D, Mille J, Pfaffinger A, Royer C. Dynamic medium scale navigation using dynamic floor fields. In: Pedestrian Evacuation Dynamics; 2012.Google Scholar
  22. 22.
    Kretz T. Pedestrian traffic: on the quickest path. Journal of Statistical Mechanics: Theory and Experiment 2009;2009(03):P03012.Google Scholar
  23. 23.
    Sethian JA. Level Set Methods and Fast Marching Methods: Cambridge University Press; 1999.Google Scholar
  24. 24.
    Petres C, Pailhas Y, Patron P, Petillot Y, Evans J, Lane D. Path Planning for Autonomous Underwater Vehicles. IEEE Transactions on Robotics 2007;23:331–41.CrossRefGoogle Scholar
  25. 25.
    Köster G, Treml F, Seitz M, Klein W. Validation of crowd models including social groups. In: Pedestrian Evacuation Dynamics; 2012.Google Scholar
  26. 26.
    Seitz M, Köster G, Pfaffinger A. Modeling pedestrian group behavior in a cellular automaton. In: Pedestrian Evacuation Dynamics; 2012.Google Scholar
  27. 27.
    Reuter V, Bergner BS, Köster G, Seitz M, Treml F, Hartmann D. On Modeling Groups in Crowds: Empirical Evidence and Simulation Results. In: Pedestrian Evacuation Dynamics; 2012.Google Scholar
  28. 28.
    Davidich M, Mayer H, Royer C, Pfaffinger A. Modelling of Waiting Zones. In: Pedestrian Evacuation Dynamics; 2012.Google Scholar
  29. 29.
    Davidich M, Köster G. Verification of Pedestrian Stream Models Based on Video Analysis. In: Pedestrian Evacuation Dynamics; 2012.Google Scholar
  30. 30.
    Mayer H, Hartmann D, Klein W, Zechlin O. Influence of emissions on pedestrian evacuation. In: Pedestrian Evacuation Dynamics; 2012.Google Scholar
  31. 31.
    Wagoum UK, Seyfried A, Holl S. Modelling dynamic route choice of pedestrians to assess the criticality of building evacuation; Advances in Complex Systems, 2012, available online.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Angelika Kneidl
    • 1
  • Dirk Hartmann
    • 2
  • André Borrmann
    • 1
  1. 1.Technische Universität MünchenMunichGermany
  2. 2.Siemens AG, Corporate TechnologyMunichGermany

Personalised recommendations