Simulation of Pedestrian Dynamics with Density Control on a Regular Grid

Conference paper

Abstract

Discrete modelling of pedestrian dynamics often defines the system geometry on a two-dimensional regular grid. In a simulation system of this category, the individual pedestrians are associated with a fixed exclusive personal space, since they are to be positioned in the corresponding grid cells. However, empirical data show that in low density range, the size of this personal space varies significantly. The purpose of this paper is to present a new method for the density control in pedestrian dynamics on a regular grid while offering a step calculation mechanism for the simulated pedestrians free of local conflict.

Keywords

Cellular automaton Pedestrian flow Simulation Variable cell size 

Notes

Acknowledgements

The authors gratefully acknowledge the support of Deutsche Forschungsgemeinschaft (German Research Foundation) for the project SCHW548/5-1+BA1189/4-1.

References

  1. 1.
    C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A, 295:507–525, 2001.CrossRefMATHGoogle Scholar
  2. 2.
    M.-J. Chen, G. Bärwolff, and H. Schwandt. Automaton model with variable cell size for the simulation of pedestrian flow, 2008. An electronic version can be retrieved at: http://page.math.tu-berlin.de/~chenmin/pub/cbs080331.pdf (accessed February 21, 2014).
  3. 3.
    M.-J. Chen, G. Bärwolff, and H. Schwandt. A study of step calculations in traffic cellular automaton models. In 13th International IEEE Conference on Intelligent Transportation Systems, pages 747–752, 2010. An electronic version can be retrieved at: http://page.math.tu-berlin.de/~chenmin/pub/cbs100709.pdf (accessed February 21, 2014).
  4. 4.
    W. Daamen, P. H. L. Bovy, and S. P. Hoogendoorn. Modelling pedestrians in transfer stations, pages 59–73. In [14], 2002. ISBN 978-3-540-42690-5.Google Scholar
  5. 5.
    D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic. Nature, 407:487–490, 2000.CrossRefGoogle Scholar
  6. 6.
    A. Keßel, H. Klüpfel, J. Wahle, and M. Schreckenberg. Microscopic simulation of pedestrian crowd motion, pages 193–200. In [14], 2002. ISBN 978-3-540-42690-5.Google Scholar
  7. 7.
    A. Kirchner, K. Nishinari, and A. Schadschneider. Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Physical Review E, 67(5):056122, 2003.Google Scholar
  8. 8.
    A. Kirchner, H. Klüpfel, K. Nishinari, A. Schadschneider, and M. Schreckenberg. Discretization effects and the influence of walking speed in cellular automata models for pedestrians dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2004(10):P10011, 2004.Google Scholar
  9. 9.
    H. L. Klüpfel. A cellular automaton model for crowd movement and egress simulation. PhD thesis, Universität Duisburg-Essen, 2003.Google Scholar
  10. 10.
    M. Moussaïd, D. Helbing, and G. Theraulaz. How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences of the United States of America, 108(17): 6884–6888, 2011.CrossRefGoogle Scholar
  11. 11.
    K. Nishinari, A. Kirchner, A. Namazi, and A. Schadschneider. Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. & Syst., E87-D(3):726–732, 2004.Google Scholar
  12. 12.
    M. Plaue, M.-J. Chen, G. Bärwolff, and H. Schwandt. Trajectory extraction and density analysis of intersecting pedestrian flows from video recordings. In [15], pages 285–296. ISBN 978-3-642-24392-9.Google Scholar
  13. 13.
    A. Schadschneider. Cellular automaton approach to pedestrian dynamics - theory, pages 75–85. In [14], 2002. ISBN 978-3-540-42690-5.Google Scholar
  14. 14.
    M. Schreckenberg and S. D. Sharma, editors. Pedestrian and Evacuation Dynamics. Springer-Verlag Berlin Heidelberg, 2002. ISBN 978-3-540-42690-5.Google Scholar
  15. 15.
    U. Stilla, F. Rottensteiner, H. Mayer, B. Jutzi, and M. Butenuth, editors. Photogrammetric Image Analysis, ISPRS Conference, PIA 2011, volume 6952 of Lecture Notes in Computer Science, 2011. Springer-Verlag Berlin Heidelberg. ISBN 978-3-642-24392-9.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Minjie Chen
    • 1
  • Günter Bärwolff
    • 1
  • Hartmut Schwandt
    • 1
  1. 1.Institut für MathematikTechnische Universität Berlin, Straße des 17. Juni 136BerlinGermany

Personalised recommendations