Advertisement

Pedestrian Simulation Using Geometric Reasoning in Velocity Space

  • Sean Curtis
  • Dinesh Manocha
Conference paper

Abstract

We present a novel pedestrian representation based on a new model of pedestrian motion coupled with a geometric optimization method. The model of pedestrian motion seeks to capture the underlying physiological and psychological factors which give rise to the fundamental diagram—the phenomenon that pedestrian speed reduces as density increases. The optimization method computes collision-free velocities directly in velocity space. The resultant method exhibits the same types of self-organizing behaviors shown by previous models, is both computationally efficient and numerically stable, can be intuitively tuned to model cross-cultural variation, and is sufficiently robust that a single set of simulation parameters produces viable results in multiple scenarios.

Keywords

Pedestrian model Geometric Constraint-based optimization Fundamental diagram Density sensitivity 

Notes

Acknowledgements

This research is supported in part by ARO Contract W911NF-10-1-0506, NSF awards 0904990, 1000579, 1117129, and 1142382, and Intel. The experimental data was made possible by DFG-Grant Nos. KL 1873/1-1 and SE 1789/1-1 and the “Research for Civil Security” program funded by German Federal Ministry of Education and Research.

References

  1. 1.
    Van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Inter. Symp. on Robotics Research. (2009)Google Scholar
  2. 2.
    Guy, S.J., Curtis, S., Lin, M.C., Manocha, D.: Least-effort trajectories lead to emergent crowd behaviors. Phys. Rev. E 85(1) (2012) 016110Google Scholar
  3. 3.
    Guy, S.J., Lin, M.C., Manocha, D.: Modeling collision avoidance behavior for virtual humans. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 2 – Volume 2. (2010) 575–582Google Scholar
  4. 4.
    Curtis, S., Guy, S.J., Zafar, B., Manocha, D.: Virtual tawaf: A case study in simulating the behavior of dense, heterogeneous crowds. In: 1st IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds. (2011) 128–135Google Scholar
  5. 5.
    Curtis, S., Snape, J., Manocha, D.: Way portals: Efficient multi-agent navigation with line-segment goals. I3D ’12 (2012) 15–22Google Scholar
  6. 6.
    Blue, V.J., Adler, J.L.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transportation Research Record: Journal of the Transportation Research Board 1644 (1998) 29–36CrossRefGoogle Scholar
  7. 7.
    Blue, V.J., Adler, J.L.: Cellular automata microsimulation of bidirectional pedestrian flows. Transportation Research Record: Journal of the Transportation Research Board 1678 (1999) 135–141CrossRefGoogle Scholar
  8. 8.
    Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295 (2001) 507–525CrossRefMATHGoogle Scholar
  9. 9.
    Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J. Stat. Mech. 2004 (October 2004)Google Scholar
  10. 10.
    Maniccam, S.: Traffic jamming on hexagonal lattice. Physica A: Statistical Mechanics and its Applications 321 (2003) 653–664CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Yamamoto, K., Kokubo, S., Nishinari, K.: Simulation for pedestrian dynamics by real-coded cellular automata (rca). Physica A: Statistical Mechanics and its Applications 379 (2007) 654–660CrossRefGoogle Scholar
  12. 12.
    Bandini, S., Federici, M., Manzoni, S., Vizzari, G.: Towards a methodology for situated cellular agent based crowd simulations. Engineering societies in the agents world VI (2006) 203–220Google Scholar
  13. 13.
    Sarmady, S., Haron, F., Talib, A.: A cellular automata model for circular movements of pedestrians during tawaf. Simulation Modelling Practice and Theory (2010)Google Scholar
  14. 14.
    Hirai, K., Tarui, K.: A simulation of the behavior of a crowd in panic. In: Proc. of the 1975 International Conference on Cybernetics and Society. (1975) 409–411Google Scholar
  15. 15.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407 (2000) 487–490CrossRefGoogle Scholar
  16. 16.
    Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Phys. Rev. E 72 (Aug 2005) 026112Google Scholar
  17. 17.
    Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4) (2010) 046111Google Scholar
  18. 18.
    Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4) (2010)Google Scholar
  19. 19.
    Seyfried, A., Schadschneider, A., Kemloh, U., Chraibi, M.: Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6(3) (2011) 425–442CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Helbing, D., Molnár, P., Farkas, I., Bolay, K.: Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 28(3) (2001) 361–383CrossRefGoogle Scholar
  21. 21.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. IJRR 17(7) (July 1998) 760–762Google Scholar
  22. 22.
    van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. ICRA (2008) 1928–1935Google Scholar
  23. 23.
    Van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation of multiple agents in crowded environments. In: I3D ’08, New York, NY, USA, ACM (2008) 139–147Google Scholar
  24. 24.
    Weidmann, U.: Transporttechnik der Fussgaenger. Schriftenreihe des IVT (1993)Google Scholar
  25. 25.
    Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. (10) (October 2005)Google Scholar
  26. 26.
    Inman, V.T., Ralston, H.J., Todd, F., Lieberman, J.C.: Human Walking. Williams & Wilkins (1981)Google Scholar
  27. 27.
    Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Advances in Complex Systems 12(3) (2009) 393–405CrossRefGoogle Scholar
  28. 28.
    Dean, G.A.: An analysis of the energy expenditure in level and grade walking. Ergonomics 8(1) (1965) 31–47CrossRefMathSciNetGoogle Scholar
  29. 29.
    Gérin-Lajoie, M., Richards, C.L., McFadyen, B.J.: The negotiation of stationary and moving obstructions during walking: Anticipatory locomotor adaptations and preservation of personal space. Motor Control 9 (2005) 242–269Google Scholar
  30. 30.
    Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J. Stat. Mech. 2011(06) (2011) P06004Google Scholar
  31. 31.
    Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J. Stat. Mech. (02) (2012) P02002Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations