Merging Processes of Pedestrian Queues

  • Daniel Weber
  • Florian Knorr
  • Michael Schreckenberg
Conference paper

Abstract

We consider the merging of two pedestrian queues in a simple cellular automaton model. The scenario is restricted to the case of a minimal merging area (2 cells), which corresponds to the intersection of two small corridors in reality. We derive exact results for the flow and present numerical results.

Notes

Acknowledgement

Our work has been conducted within the SPIDER-project, which is part of the nationwide security research program funded by the German Federal Ministry of Education and Research (BMBF) (FKZ 13 N10236).

References

  1. 1.
    Burstedde, C., Klauck, K., Schadschneider, A., & Zittartz, J. (2001). Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications, 295, pp. 507–525.CrossRefMATHGoogle Scholar
  2. 2.
    Kirchner, A., Nishinari, K., & Schadschneider, A. (2003). Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E, 67, p. 056122.Google Scholar
  3. 3.
    Kretz, T., & Schreckenberg, M. (2007). Moore and more and symmetry. In N. Waldau, P.Gattermann, H. Knoflacher, & M. Schreckenberg (Eds.), Pedestrian and Evacuation Dynamics 2005 (pp. 297–308). Berlin, Heidelberg.Google Scholar
  4. 4.
    Kretz, T., & Schreckenberg, M. (2006). The F.A.S.T.-Model. In S. El Yacoubi, B. Chopard, & S. Bandini (Eds.), Cellular Automata (Lecture Notes in Computer Science, Vol. 4173) (pp. 712–715). Berlin, Heidelberg.Google Scholar
  5. 5.
    Yanigasawa, D., & Nishinari, K. (2007). Mean-field theory for pedestrian outflow through an exit. Phys. Rev. E, 76, p. 061117.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Weber
    • 1
  • Florian Knorr
    • 1
  • Michael Schreckenberg
    • 1
  1. 1.Physik von Transport und VerkehrUniversität Duisburg-EssenDuisburgGermany

Personalised recommendations