Advertisement

An Empirically-Grounded Emergent Approach to Modeling Pedestrian Behavior

Conference paper

Abstract

Realistic models of locomotion, accounting for both individual pedestrian behavior and crowd dynamics, are crucial for crowd simulation. Most existing pedestrian models have been based on ad-hoc rules of interaction and parameters, or on theoretical frameworks like physics-inspired approaches that are not cognitively grounded. Based on the cognitively-plausible behavioral dynamics approach, we argue here for a bottom-up approach, in which the local control laws for locomotor behavior are derived experimentally and the global crowd behavior is emergent. The behavioral dynamics approach describes human behavior in terms of stable, yet flexible behavioral patterns. It enabled us to build an empirically-grounded model of human locomotion that accounts for elementary locomotor behaviors. Based on our existing components, we then elaborate the model with two new components for wall avoidance and speed control for collision avoidance. We show how the model behaves with many stationary obstacles and interacting agents, and how it can be used in agent-based simulations. Five scenarios show how complex individual behavioral patterns and crowd dynamics patterns can emerge from the combination of our simple behavioral strategies. We argue that our model is parsimonious and simple, yet accounts realistically for individual locomotor behaviors while yielding plausible crowd dynamics, like lane formation. Our model and the behavioral dynamics approach thus provide a relevant framework for crowd simulation.

Keywords

Empirically-grounded model Pedestrian behavior Behavioral dynamics Individual based model 

References

  1. 1.
    Bonneaud, S., Rio, K., Chevaillier, P., Warren, W.: Accounting for patterns of collective behavior in crowd locomotor dynamics for realistic simulations. In: Z. Pan, A. Cheok, W. Muller, M. Chang, M.E. Zhang (eds.) Transactions on Edutainment VII, LNCS, vol. 7145, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bonneaud, S., Warren, W.H., Chevaillier, P.: Multi-agent modeling of the collective behavior of groups of pedestrians. 2012 (in preparation)Google Scholar
  3. 3.
    Chardenon, A., Montagne, G., J Buekers, M., Laurent, M.: The visual control of ball interception during human locomotion. Neuroscience Letters 334(1), 13–16 (2002)Google Scholar
  4. 4.
    Cohen, J.A., Bruggeman, H., Harrison, H., Warren, W.H.: Behavioral dynamics of moving obstacle avoidance. 2012 (in preparation)Google Scholar
  5. 5.
    Cutting, J.E., Vishton, P.M., Braren, P.A.: How we avoid collisions with stationary and moving obstacles. Psychological Review 102, 627–651 (1995)CrossRefGoogle Scholar
  6. 6.
    Fajen, B.: Calibration, information, and control strategies for braking to avoid a collision. Journal of Experimental Psychology: Human Perception and Performance 31(3), 480–501 (2005)Google Scholar
  7. 7.
    Fajen, B.R., Warren, W.H.: Behavioral dynamics of steering, obstacle avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance 29, 343–362 (2003)Google Scholar
  8. 8.
    Fajen, B.R., Warren, W.H.: Behavioral dynamics of intercepting a moving target. Experimental Brain Research 180, 303–319 (2007)CrossRefGoogle Scholar
  9. 9.
    Fajen, B.R., Warren, W.H.: Route selection in complex scenes emerges from the dynamics of steering and obstacle avoidance. Poster at the VSS 2010 conference, Naples, Florida (2010)Google Scholar
  10. 10.
    Gérin-Lajoie, M., Warren, W.H.: The circumvention of barriers: Extending the steering dynamics model. Journal of Vision 8(6), 1158a (2008)Google Scholar
  11. 11.
    Gibson, J.: Visually controlled locomotion and visual orientation in animals. Ecological Psychology 10, 161–176 (1998). (Reprinted from British J. of Psychology, 49, 182–194, 1958)Google Scholar
  12. 12.
    Gibson, J.J.: The ecological approach to visual perception. Lawrence Erlbaum (1986)Google Scholar
  13. 13.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Review E 51, 4282–4286 (1995)CrossRefGoogle Scholar
  14. 14.
    Huang, W.H., Fajen, B.R., Fink, J.R., Warren, W.H.: Visual navigation and obstacle avoidance using a steering potential function. Robotics and Autonomous Systems 54, 288–299 (2006)CrossRefGoogle Scholar
  15. 15.
    Kelso, J.A.S.: Dynamic patterns: the self-organization of brain and behavior, chap. Intentional dynamics, pp. 137–158. MIT Press (1995)Google Scholar
  16. 16.
    Kim, N.G., Turvey, M., Carello, C.: Optical information about the severity of upcoming contacts. Journal of Experimental Psychology: Human Perception and Performance 19(1), 179–193 (1993)Google Scholar
  17. 17.
    Kugler, P., Turvey, M.: Information, natural law, and the self-assembly of rhythmic movements. Hillsdale, NJ: Lawrence Erlbaum Associates (1987)Google Scholar
  18. 18.
    Lakoba, T.I., Kaup, D.J., Finkelstein, N.M.: Modifications of the helbing-molnár-farkas-vicsek social force model for pedestrian evolution. Simulation 81, 339–352 (2005)CrossRefGoogle Scholar
  19. 19.
    Lee, D.N.: A theory of visual control of braking based on information about time-to-collision. Perception 5, 437–459 (1976)CrossRefGoogle Scholar
  20. 20.
    Lenoir, M., Musch, E., Janssens, M., Thiery, E., Uyttenhove, J.: Intercepting Moving Objects During Self-Motion. Journal of Motor Behavior 31(1), 55–67 (1999)CrossRefGoogle Scholar
  21. 21.
    Moussaid, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences of the United States of America 108(17), 6884–6888 (2011)CrossRefGoogle Scholar
  22. 22.
    Moussaid, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS ONE 5(4), e10,047 (2010). DOI 10.1371/journal.pone.0010047Google Scholar
  23. 23.
    Ondrej, J., Pettre, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. ACM Transaction on Graphics 4:123 (2010)Google Scholar
  24. 24.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Proceedings of the SIGGRAPH conference (1987)Google Scholar
  25. 25.
    Rio, K., Warren, W.H.: A data-driven model of pedestrian following and emergent crowd behavior. In: U. Weidmann, U. Kirsch, E. Puffe, M.e. Weidmann (eds.) Pedestrian and Evacuation Dynamics. Springer, Heidelberg (2012)Google Scholar
  26. 26.
    Thalmann, D., Musse, S.R.: Crowd simulation. Springer (2007)Google Scholar
  27. 27.
    Warren, W.: The dynamics of perception and action. Psychological review 113, 358–389 (2006)CrossRefGoogle Scholar
  28. 28.
    Warren, W., Fajen, B.: Behavioral dynamics of visually guided locomotion. In: A. Fuchs, V. Jirsa (eds.) Coordination: Neural, Behavioral and Social Dynamics, Understanding Complex Systems, vol. 17, pp. 45–75. Springer Berlin / Heidelberg (2008)Google Scholar
  29. 29.
    Warren, W.H., Kay, B.A., Zosh, W.D., Duchon, A.P., Sahuc, S.: Optic flow is used to control human walking. Nature Neuroscience 4, 213–216 (2001)CrossRefGoogle Scholar
  30. 30.
    Yilmaz, E.H., Warren, W.H.: Visual control of braking: a test of the \(\dot{\tau }\) hypothesis. Journal of Experimental Psychology: Human Perception and Performance 21, 996–1014 (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Virtual Environment and Navigation Laboratory, Department of CognitiveLinguistic and Psychological Sciences, Brown UniversityProvidenceUSA

Personalised recommendations