Advertisement

Quantitative Validation of the Generalized Centrifugal Force Model

  • Mohcine Chraibi
  • Armin Seyfried
  • Andreas Schadschneider
Conference paper

Abstract

Mathematical models for pedestrian dynamics contribute increasingly to the process of understanding the dynamics of crowds, which has a positive impact in designing building and enhancing their level of safety. In order to improve their validity and maximize the significance of their predictions, several experiments were conducted and evaluated. The results of these experiments give authentic insights into the dynamics of pedestrians and serve as a benchmark for the models. Therefore, the quantitative validation of mathematical models is an important step in their development and eases their application in real-world scenarios. In this article we briefly introduce the generalized centrifugal force model (GCFM). Computer simulations with the GCFM are compared with different empirical data obtained in controlled experiments. In order to test the quality of the model, several scenarios are simulated without changing the parameters of the underlying model.

Notes

Acknowledgement

This work is within the framework of two projects. The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) for funding the project under Grant-No. ~ SE 1789/1-1 as well as the Federal Ministry of Education and Research (BMBF) for funding the project under Grant-No. ~ 13 N9952 and 13 N9960.

References

  1. 1.
    Holl, S., Seyfried, A.: Hermes - an evacuation assistant for mass events. inSiDe, 7(1), 60–61 (2009)Google Scholar
  2. 2.
    Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems. From Molecules to Vehicles. Elsevier Science Publishing Co Inc. (2010)Google Scholar
  3. 3.
    Chattaraj, U., Seyfried, A. and Chakroborty, P. Comparison of pedestrian fundmental diagram across cultures, Advances in Complex Systems(3), 393–405, 2009Google Scholar
  4. 4.
    S. P. Hoogendoorn and W. Daamen. Pedestrian behavior at bottlenecks. Transport. Sci., 39(2):147–159, 2005.CrossRefGoogle Scholar
  5. 5.
    J. Liddle, A. Seyfried, W. Klingsch, T. Rupprecht, A. Schaschneider, and A. Winkens. An experimental study of pedestrian congestions: Influence of bottleneck width and length. ArXiv e-prints, 2009, 0911.4350. Conference proceedings for Traffic and Granular Flow 2009.Google Scholar
  6. 6.
    X. Liu, W. Song, and J. Zhang. Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing. Physica A, 388(13):2717–2726, 2009.CrossRefGoogle Scholar
  7. 7.
    M. Moussaid, D. Helbing, S. Garnier, A. Johansson, M. Combe, and G. Theraulaz. Experimental study of the behavioural mechanisms underlying selforganization in human crowds. Proc. R. Soc. B., 276(1668):2755–2762, 2009.CrossRefGoogle Scholar
  8. 8.
    A. Seyfried, M. Boltes, J. K¨ahler, W. Klingsch, A. Portz, T. Rupprecht, A. Schadschneider, B. Steffen, and A. Winkens. Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In W. W. F. Klingsch, C. Rogsch, A. Scha schneider, and M.Schreckenberg, editors, Pedestrian and Evacuation Dynamics 2008, pages 145–156, Berlin Heidelberg, 2010. Springer.Google Scholar
  9. 9.
    J. Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried. Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J. Stat. Mech., 2011.Google Scholar
  10. 10.
    A. Kirchner, K. Nishinari, and A. Schadschneider. Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E, 67:056122, 2003.CrossRefGoogle Scholar
  11. 11.
    W. J. Yu, L. Chen, R. Dong, and S. Dai. Centrifugal force model for pedestrian dynamics. Phys. Rev. E, 72(2):026112, 2005.CrossRefGoogle Scholar
  12. 12.
    D. R. Parisi, M. Gilman, and H. Moldovan. A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A, 388(17):3600–3608, 2009.CrossRefGoogle Scholar
  13. 13.
    M. Moussaid, D. Helbing, and G. Theraulaz. How simple rules determine pedestrian behavior and crowd disasters. P. Natl. Acad. Sci. USA., 108(17):6884–6888, 2011, 1105.2152.Google Scholar
  14. 14.
    D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Phys. Rev. E, 51:4282–4286, 1995.CrossRefGoogle Scholar
  15. 15.
    M. Chraibi, A. Seyfried, and A. Schadschneider. The generalized centrifugal force model for pedestrian dynamics. Phys. Rev. E, 82:046111, 2010.CrossRefGoogle Scholar
  16. 16.
    J. J. Fruin. Pedestrian Planning and Design. Elevator World, New York, 1971.Google Scholar
  17. 17.
    L. A. Pipes. An operational analysis of traffic dynamics. J. Appl. Phys., 24(3):274–281, Mar 1953.Google Scholar
  18. 18.
    B. Steffen and A. Seyfried. Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A, 389(9):1902–1910, 2010. flow, speed and direction with minimal scatter.Google Scholar
  19. 19.
    A. Seyfried, M. Boltes, J. Kaehler, W. Klingsch, A. Portz, T. Rupprecht, A. Schadschneider, B. Steffen, and A. Winkens. Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In W. W. F. Klingsch, C. Rogsch, A. Schadschneider, and M.Schreckenberg, editors, Pedestrian and Evacuation Dynamics 2008, pages 145–156, Berlin Heidelberg, 2010. Springer.Google Scholar
  20. 20.
    A. Schadschneider. I’m a football fan … get me out of here. Physics World, 21, 2010.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mohcine Chraibi
    • 1
    • 2
  • Armin Seyfried
    • 1
    • 2
  • Andreas Schadschneider
    • 3
  1. 1.Jülich Supercomputing Centre, Forschungszentrum JülichJülichGermany
  2. 2.Computer Simulation for Fire Safety and Pedestrian TrafficBergische Universität WuppertalWuppertalGermany
  3. 3.Institute for Theoretical PhysicsUniversität zu KölnKölnGermany

Personalised recommendations