A Macroscopic Model for Bidirectional Pedestrian Flow

  • Cécile Appert-Rolland
  • Pierre Degond
  • Sébastien Motsch
Conference paper


We present a macroscopic model for pedestrian dynamics in a corridor (or in any quasi one-dimensional system). The model is inspired from the Aw-Rascle model of car traffic but here, a two-directional flow is considered: in each point, two densities are defined, for left and right going pedestrians. The challenge is to bound the density even under congestion. This is enforced by a pressure term, modeling the interactions between pedestrians, that diverges when the density approaches the maximal density. The intensity of the divergence is controlled by a small parameter epsilon. In the limit where epsilon tends to zero, the system exhibits coexisting congested and uncongested phases separated by sharp interfaces.

The lateral extension of the corridor can be taken into account through a multi-lane model, with appropriate lane changes. A characteristic of two-way models is that they can loose their hyperbolicity in some cases. Actually, this could be the counterpart of phenomena observed in real crowds, namely the instability of homogeneous flows towards lane-formation, or even crowd turbulence as observed at very high crowd densities.


Pedestrian traffic Two-way traffic Multi-lane traffic Macroscopic model Aw-Rascle model Congestion constraint 


  1. 1.
    S. Al-nasur & P. Kachroo: A Microscopic-to-Macroscopic Crowd Dynamic model. Proceedings of the IEEE ITSC 2006, 2006 IEEE Intelligent Transportation Systems Conference Toronto, Canada, September 17–20 (2006).Google Scholar
  2. 2.
    C. Appert-Rolland, P. Degond, and S. Motsch: Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media 6 (2011) 351–381.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. Aw, M. Rascle: Resurrection of second order models of traffic flow. SIAM J. Appl. Math., 60 (2000), 916–938.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    N. Bellomo, C. Dogbe: On the modelling crowd dynamics: from scaling to second order hyperbolic macroscopic models. Math. Models Methods Appl. Sci., 18 (2008), 1317–1345.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    F. Berthelin, P. Degond, M. Delitala, M. Rascle: A model for the formation and evolution of traffic jams. Arch. Rat. Mech. Anal., 187 (2008), 185–220.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, J. Royer, M. Rascle: A Traffic-Flow Model with Constraints for the Modeling of Traffic Jams. Math. Models Methods Appl. Sci., 18, Suppl. (2008), 1269–1298.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    F. Bouchut, Y. Brenier, J. Cortes, J. F. Ripoll: A hierachy of models for two-phase flows. J. Nonlinear Sci., 10 (2000), 639–660.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    C. Chalons: Numerical approximation of a macroscopic model of pedestrian flows. SIAM J. Sci. Comput., 29 (2007), 539–555.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    R. M. Colombo, M. D. Rosini: Pedestrian flows and nonclassical shocks. Math. Methods Appl. Sci., 28 (2005), 1553–1567.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    C. Daganzo: Requiem for second order fluid approximations of traffic flow. Transp. Res. B, 29 (1995), 277–286.CrossRefGoogle Scholar
  11. 11.
    P. Degond, M. Delitala: Modelling and simulation of vehicular traffic jam formation. Kinet. Relat. Models, 1 (2008), 279–293.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    P. Degond, J. Hua, L. Navoret: Numerical simulations of the Euler system with congestion constraint. J. of Computational Physics, 230 (2011), 8057–8088.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    P. Degond, M. Tang: All speed scheme for the low Mach number limit of the Isentropic Euler equations. Commun. Comput. Phys., 10 (2011), 1–31.MathSciNetGoogle Scholar
  14. 14.
    D. Helbing: A fluid dynamic model for the movement of pedestrians. Complex Systems, 6 (1992), 391–415.MATHMathSciNetGoogle Scholar
  15. 15.
    D. Helbing, A. Johansson, and H.Z. Al-Abideen: The dynamics of crowd disasters: An empirical study. Phys. Rev. E 75, 046109 (2007).CrossRefGoogle Scholar
  16. 16.
    L. F. Henderson: On the fluid mechanics of human crowd motion. Transportation Research, 8 (1974), 509–515.CrossRefGoogle Scholar
  17. 17.
    S. Hoogendoorn, P. H. L. Bovy: Simulation of pedestrian flows by optimal control and differential games. Optimal Control Appl. Methods, 24 (2003), 153–172.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    R. L. Hughes: A continuum theory for the flow of pedestrians. Transportation Research B, 36 (2002), 507–535.CrossRefGoogle Scholar
  19. 19.
    R. L. Hughes: The flow of human crowds. Ann. Rev. Fluid Mech., 35 (2003), 169–182.CrossRefGoogle Scholar
  20. 20.
    M. J. Lighthill, J. B. Whitham: On kinematic waves. I: flow movement in long rivers. II: A theory of traffic flow on long crowded roads. Proc. Roy. Soc., A229 (1955), 281–345.MathSciNetGoogle Scholar
  21. 21.
    B. Maury, A. Roudneff-Chupin, F. Santambrogio: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci., 20 (2010), 1787–1821.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    B. Maury, J. Venel: A mathematical framework for a crowd motion model. C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 1245–1250.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    M. Moussaïd, E. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond, and G. Theraulaz: Traffic Instabilities in Self-organized Pedestrian Crowds. PLoS Computional Biology, 8 (2012) 1002442.CrossRefGoogle Scholar
  24. 24.
    B. Piccoli, A. Tosin: Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn., 21 (2009), 85–107.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    B. Piccoli, A. Tosin: Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal., 199 (2010), 707–738.CrossRefMathSciNetGoogle Scholar
  26. 26.
    V. Shvetsov, D. Helbing: Macroscopic dynamics of multi-lane traffic. Phys. Rev. E 59 (1999), 6328–6339.CrossRefGoogle Scholar
  27. 27.
    W. G. Weng, S. F. Shena, H. Y. Yuana, W. C. Fana: A behavior-based model for pedestrian counter flow. Physica A 375 (2007), 668–678.CrossRefGoogle Scholar
  28. 28.
    More information can be found at

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cécile Appert-Rolland
    • 1
    • 2
  • Pierre Degond
    • 3
    • 4
  • Sébastien Motsch
    • 5
  1. 1.Laboratory of Theoretical Physics UMR 8627CNRSOrsay CedexFrance
  2. 2.Laboratory of Theoretical PhysicsUniversity Paris-SudOrsay CedexFrance
  3. 3.Institut de Mathématiques de ToulouseUniversité de Toulouse; UPS, INSA, UT1, UTMToulouseFrance
  4. 4.Institut de Mathématiques de Toulouse UMR 5219CNRSToulouseFrance
  5. 5.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations