Influence of Spreading Hazardous Material in Macroscopic Evacuation Dynamics: A Proof of Concept

  • Simone GöttlichEmail author
  • Sebastian Kühn
  • Jan Peter Ohst
  • Stefan Ruzika
Conference paper


In this article, an evacuation model describing the egress in case of danger is considered. The underlying evacuation model is based on continuous network flows, while the spread of some gaseous hazardous material relies on an advection–diffusion equation. A proof of concept shows differences to the usually used macroscopic evacuation models.


Evacuation Dynamic network flows Optimization 



S. Ruzika is partially supported by BMBF, Project REPKA, FKZ 13N9961 (TU KL). S. Kühn and J.P. Ohst are supported by Stiftung Rheinland-Pfalz für Innovation, Project EvaC, FKZ 989.


  1. 1.
    H. W. Hamacher and S. A. Tjandra, “Mathematical modelling of evacuation problems - a state of the art,” in Pedestrian and Evacuation Dynamics, M. Schreckenberger and S. D. Sharma, Eds., Berlin, Springer, 2002, pp. 227–266.Google Scholar
  2. 2.
    A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch and A. Seyfried, “Evacuation dynamics: Empirical results, modeling and applications,” in Encyclopedia of Complexity and System Science, B. Meyers, Ed., New York, Springer, 2009, pp. 3142–3176.CrossRefGoogle Scholar
  3. 3.
    D. Helbing, “A mathematical model for the behavior of pedestrians,” Behavioral Science, vol. 36, pp. 298–310, 1991.CrossRefGoogle Scholar
  4. 4.
    G. M. Coclite, M. Garavello and B. Piccoli, “Traffic flow on a road network,” SIAM Journal on Mathematical Analysis, no. 36, pp. 1862–1886, 2005.Google Scholar
  5. 5.
    M. Herty and A. Klar, “Modeling, simulatoin, and optimization of traffic flow networks,” SIAM Journal on Scientific Computing, vol. 25, pp. 1066–1087, 2003.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    S. Göttlich, M. Herty and A. Klar, “Network models for supply chains,” Communications in Mathematical Sciences, vol. 3, pp. 545–559, 2005.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    S. Göttlich, S. Kühn, J. P. Ohst, S. Ruzika and M. Thiemann, “Evacuation dynamics influenced by spreading hazardous material,” Networks and Heterogeneous Media, vol. 6, no. 3, p. 443, September 2011.Google Scholar
  8. 8.
    H. Holden and N. H. Risebro, “A mathematical model of traffic flow on a network of unidirectional roads,” SIAM Journal on Mathematical Analysis, vol. 26, pp. 999–1017, 1995.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Simone Göttlich
    • 1
    Email author
  • Sebastian Kühn
    • 2
  • Jan Peter Ohst
    • 2
  • Stefan Ruzika
    • 2
  1. 1.School of Business Informatics and MathematicsUniversity of MannheimMannheimGermany
  2. 2.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations