Dynamic Medium Scale Navigation Using Dynamic Floor Fields

  • Dirk Hartmann
  • Jana Mille
  • Alexander Pfaffinger
  • Christian Royer
Conference paper


This contribution considers a new method for dynamic medium scale navigation in microscopic pedestrian simulators. The concept of static navigation floor fields is extended to a dynamic interpretation following ideas of (Kretz, T, Journal of Statistical Mechanics: Theory and Experiment, P03012, 2009) and (Hartmann, D, New Journal of Physics 12(4):043032, 2010) within a cellular automaton approach. Every few simulation steps a new floor field for navigation is constructed by solving the Eikonal equation on the dual grid of the underlying cellular automaton discretization. By considering other pedestrians directly in the construction of the floor field, the realism of the simulations is significantly increased. The new contribution of our work is to additionally consider walking directions of pedestrians. This leads to a significant increase in the realism of simulations.

The increased realism of the new concept is underlined by simulations of various example scenarios proposed in the literature. These show that the method is capable of reproducing a number of phenomena, e.g. lane formation.


Microscopic model Navigation Floor field Dynamic floor field Eikonal equation Fast marching method Pedestrian flows Pedestrian crowds 



The authors would like to thank the German Federal Ministry of Education and Research who funded our research through the priority program Schutz und Rettung von Menschen within the project REPKA – Regional Evacuation: Planning, Control and Adaptation [24].


  1. 1.
    Bellomo, N. & Dogbe, C. (2011): On the modeling of traffic and crowds: A survey of models, speculations, and perspectives. SIAM Rev. 53, 409–463.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Blue, V., Embrechts, M. & Adler, J. (1997): Cellular automata modeling of pedestrian movements. IEEE Int. Conf. on Systems, Man and Cybernetics.Google Scholar
  3. 3.
    Burstedde, C, Klauck, K., Schadschneider, A. & Zittarz, J. (2001): Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295: 507–525.CrossRefMATHGoogle Scholar
  4. 4.
    Chraibi, M., Seyfried, A. & Schadschneider, A. (2010): Generalized centrifugal force model for pedestrian dynamics. Phys. Rev. E 82. 046111.Google Scholar
  5. 5.
    Chraibi, M., Kemloh, U., Schadschneider, A. & Seyfried, A. (2011): Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6, 425–442.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Davidich, M.I. & Köster, G. (2012): Verification of Pedestrian Stream Models Based on Video Analysis. PED 2012.Google Scholar
  7. 7.
    Davidich, M.I., Mayer, H., Royer, C. & Pfaffinger, A. (2012): Modelling of Waiting Zones. PED 2012.Google Scholar
  8. 8.
    Hartmann, D. (2010): Adaptive pedestrian dynamics based on geodesics. New Journal of Physics 12 (4), 043032.CrossRefGoogle Scholar
  9. 9.
    Hartmann, D. & Hasel, P. (2011): Efficient floor field methods for microscopic pedestrian crowd simulations. SubmittedGoogle Scholar
  10. 10.
    Helbing, D., Molnár, P., Farkas, I. & Bolay, K. (2001): Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 2001 (28), 361–383.CrossRefGoogle Scholar
  11. 11.
    Helbing, D. (2001): Traffic and Related Self-Driven Many-Particle Systems.Google Scholar
  12. 12.
    Helbing, D. & Molnár, P. (1998): Social force model for pedestrian dynamics. Physical Review E 51: 4282–4286.CrossRefGoogle Scholar
  13. 13.
    Huang, H.-J. & Guo, R.-Y (2008): Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits. Phys. Rev. 78, 021131.Google Scholar
  14. 14.
    Kirik, E., Yurgelyan, T. & Krouglov, D. (2009): The shortest time and/or the shortest path strategies in a CA FF pedestrian dynamics model J. Siberian Fed. Univ. Math. Phys. 2 271–8.Google Scholar
  15. 15.
    Klüpfel, Hubert (2003): A cellular automaton model for crowd movement and egress simulation. PhD-Thesis Universität Duisburg-Essen.Google Scholar
  16. 16.
    A. Kneidl, D. Hartmann, A. Borrmann : A hybrid multi-scale approach for simulation of pedestrian dynamics, Transportation Research Part C: Emerging Technologies, Volume 37, December 2013, Pages 223–237Google Scholar
  17. 17.
    Köster, G., Hartmann, D. & Klein, W. (2010): Microscopic pedestrian simulations: From passenger exchange times to regional evacuation. Operations Research - Mastering complexity.Google Scholar
  18. 18.
    Köster, G., Treml, F., Seitz, M. & Klein, W. (2012): Validation of crowd models including social groups. PED 2012.Google Scholar
  19. 19.
    Kretz, T. (2009): Pedestrian traffic: on the quickest path. Journal of Statistical Mechanics: Theory and Experiment 2009, P03012Google Scholar
  20. 20.
    Mayer, H., Hartmann, D., Klein, W. & Zechlin, O. (2012): Influence of emissions on pedestrian evacuation. PED 2012.Google Scholar
  21. 21.
    Nishinari, K., Kirchner, A., Namazi, A. & Schadschneider, A (2004): Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst. E87D, 726–732.Google Scholar
  22. 22.
    Parisi, D. R., Gilman, M. & Moldovan, H. (2009). A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A 388: 3600–3608.CrossRefGoogle Scholar
  23. 23.
    Pelechano, N., Allbeck, J. M. & Badler, N. (2008): Virtual crowds: Methods, simulation, and control. Morgan & Claypool Publishers.Google Scholar
  24. 24.
    REPKA (2012): Regionale Evakuierung: Planung, Kontrolle und Anpassung.
  25. 25.
    Reuter, V., Bergner, B., Köster, G., Seitz, M., Treml, F. & Hartmann, D. (2012): On Modeling Groups in Crowds: Empirical Evidence and Simulation Results Including Large Groups. PED 2012.Google Scholar
  26. 26.
    Schadschneider, A., Klingsch, W., Klüpfel, H. and Kretz, T., Rogsch, C. & Seyfried, A. (2009): Evacuation dynamics: Empirical results, modeling and applications. Encyclopedia of Complexity and System Science, 3142–3176.Google Scholar
  27. 27.
    Seitz, M., Köster, G. & Pfaffinger, A. (2012): Modeling pedestrian group behavior in a cellular automaton. PED 2012.Google Scholar
  28. 28.
    Sethian, J.A. (1999): Level Set Methods and Fast Marching Methods. Cambridge University Press.Google Scholar
  29. 29.
    Weidmann, U. (1993): Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung). Schriftenreihe des IVT, ETH Zürich.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dirk Hartmann
    • 1
  • Jana Mille
    • 1
  • Alexander Pfaffinger
    • 1
  • Christian Royer
    • 1
  1. 1.Siemens AG, Corporate TechnologyMunichGermany

Personalised recommendations