Skip to main content

Preliminaries on (Almost-)Complex Manifolds

  • Chapter
  • First Online:
  • 1482 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2095))

Abstract

In this preliminary chapter, we summarize some basic notions and some classical results in (almost-)complex and symplectic geometry. In particular, we start by setting some definitions and notation concerning (almost-)complex structures, Sect. 1.1, symplectic structures, Sect. 1.2, and generalized complex structures, Sect. 1.3; then we recall the main results in the Hodge theory for Kähler manifolds, Sect. 1.4, and in the Kodaira, Spencer, Nirenberg, and Kuranishi theory of deformations of complex structures, Sect. 1.5; furthermore, we summarize some basic definitions and some useful facts about currents and de Rham homology, Sect. 1.6, and about nilmanifolds and solvmanifolds, Sect. 1.7, in order to set the notation for the following chapters. (As a matter of notation, unless otherwise stated, by “manifold” we mean “connected differentiable manifold”, and by “compact manifold” we mean “closed manifold”.)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This fact can be generalized for a bi-differential bi-graded algebra of PD -type, [Kas12b, Sect. 2], see also [AK12, Sect. 2.1].

  2. 2.

    See, e.g., [Hum78, Sect. 7] for general results concerning \(\mathfrak{s}\mathfrak{l}(2; \mathbb{K})\)-representations.

  3. 3.

    Recall that an \(\mathfrak{s}\mathfrak{l}(2; \mathbb{R})\)-representation on a (possibly non-finite dimensional) \(\mathbb{R}\)-vector space V is called of finite H-spectrum if V can be decomposed into the direct sum of eigen-spaces of H and H has only finitely-many distinct eigen-values, [Yan96, Definition 2.2].

  4. 4.

    We recall that the Clifford algebra associated to \(\mathit{TX} \oplus {T}^{{\ast}}X\) and \(\left \langle \cdot \;\vert \;\cdot \cdot \right \rangle\) is

    $$\displaystyle{\mathrm{Cliff}\left (\mathit{TX} \oplus {T}^{{\ast}}X,\,\left \langle \cdot \,\vert \,\cdot \cdot \right \rangle \right )\,=\,\left.\left (\bigoplus _{ k\in \mathbb{Z}}\bigotimes _{j=1}^{k}\left (\mathit{TX} \oplus {T}^{{\ast}}X\right )\right )/\left \{v \otimes _{\mathbb{R}}v -\left \langle v\,\vert \,v\right \rangle: v \in \mathit{TX} \oplus {T}^{{\ast}}X\right \}\right..}$$
  5. 5.

    We recall that, given a manifold X endowed with a generalized complex structure \(\mathcal{J}\) , the canonical spectral sequence is the spectral sequence being naturally associated to the double complex obtained from \(\left (U_{\mathcal{J}}^{\bullet },\,\partial _{\mathcal{J},H},\,\overline{\partial }_{\mathcal{J},H}\right )\) : more precisely, to the double complex \(\left (U_{\mathcal{J}_{J}}^{\bullet _{1}-\bullet _{2}} \otimes _{\mathbb{C}}{\mathbb{C}\beta }^{\bullet _{2}},\,\partial _{\mathcal{J}_{ J}} \otimes _{\mathbb{R}}\mathrm{id},\,\overline{\partial }_{\mathcal{J}_{J}} \otimes _{\mathbb{R}}\beta \right )\) , where \(\left \{{\beta }^{m}\;:\; m \in \mathbb{Z}\right \}\) is an infinite cyclic multiplicative group generated by some β, [Cav05, Sect. 4.2], see [Bry88, Sect. 1.3], [Goo85, Sect. II.2], [Con85, Sect. II]; (compare also [AT13a, Sect. 1]).

  6. 6.

    We recall that a graded \(\mathbb{K}\)-algebra A is graded-commutative if, for every x ∈ A degx and y ∈ A degy, it holds \(x \cdot y ={ \left (-1\right )}^{\deg x\cdot \deg y}\,y \cdot x\).

  7. 7.

    We recall that a differential \(\mathrm{d}: {A}^{\bullet } \rightarrow {A}^{\bullet +1}\) on a graded \(\mathbb{K}\)-algebra A satisfies the graded-Leibniz rule if, for every x ∈ A degx and y ∈ A degy, it holds \(\mathrm{d}\left (x \cdot y\right ) = \mathrm{d}x \cdot y +{ \left (-1\right )}^{\deg x}\,x \cdot \mathrm{d}y\).

  8. 8.

    The author would like to thank Luis Ugarte for having pointed out the subject, and Junyan Cao and Gunnar Þór Magnússon for useful discussions on the matter.

  9. 9.

    Let C be a category with finite products, and consider Grp the category of groups; a group-object G in C is an object of C such that \(\mathrm{Hom}(\cdot,\,G): \mathrm{\mathbf{C}} \rightarrow \mathrm{\mathbf{Grp}}\) is a contravariant functor.

    In such a notation, a Lie group (respectively a Lie group of class \({\mathcal{C}}^{k}\), for \(k \in \mathbb{N} \cup \{\infty,\,\omega \}\), respectively a complex Lie group) is a group-object in the category of differentiable manifolds with differentiable maps (respectively in the category of manifolds of class \({\mathcal{C}}^{k}\) with maps of class \({\mathcal{C}}^{k}\), respectively in the category of complex manifolds with holomorphic maps). A homomorphism of Lie groups between G and H is a morphism f: G → H of manifolds inducing, for every manifold X, a homomorphism of groups between Hom(X, G) → Hom(X, H).

  10. 10.

    We recall that the following theorem by A.I. Mal’tsev: a group Γ is isomorphic to a discrete co-compact subgroup in a simply-connected connected nilpotent Lie group if and only if it is finitely-generated, nilpotent, and torsion-free, [Mal49, Corollary 1], see, e.g., [Rag72, Theorem 2.18].

  11. 11.

    Recall that a manifold is called parallelizable if its tangent bundle is trivial.

  12. 12.

    We recall the following, referring, e.g., to [TO97, Theorem 1.2]; see also [Rag72, Theorem 3.3, Corollary 3.5] for a different proof.

    Theorem 1.30 (Mostow Structure Theorem, [Mos54, Mos57, Theorem 2]).

    Any solvmanifold can be naturally fibred over a torus with a nilmanifold as a fibre. More precisely, let \(\left.\varGamma \setminus G\right.\) be a solvmanifold, and consider the maximal connected nilpotent subgroup N of G. Then (i) NΓ is a closed subgroup in G, (i) N ∩Γ is a lattice in N, and (i) \(\left.N\varGamma \setminus G\right.\) is a torus. Hence, one gets the Mostow bundle

    $$\displaystyle{\left.N \cap \varGamma \setminus N\right. = \left.\varGamma \setminus N\varGamma \right.\hookrightarrow \left.\varGamma \setminus G\right. \rightarrow \left.N\varGamma \setminus G\right.\;.}$$

    (See also [Boc09, Theorem 3.6], which gives a sufficient condition for the Mostow bundle to be a principal bundle.)

  13. 13.

    The notion of orbifold has been introduced by I. Satake in [Sat56], with the name of V-manifold, and has been studied, among others, by W.L. Baily, [Bai56, Bai54]. We recall that a complex orbifold of complex dimension n is a singular complex space whose singularities are locally isomorphic to quotient singularities \(\left.{\mathbb{C}}^{n}/G\right.\), for finite subgroups \(G\,\subset \,\mathrm{GL}(n; \mathbb{C})\), [Sat56, Definition 2]. We refer, e.g., to [Joy07, Joy00, Sat56, Bai56, Bai54] for more results concerning complex orbifolds and their cohomology.

  14. 14.

    Recall that nilmanifolds and solvmanifolds are Eilenberg and MacLane spaces of type K(π; 1); in particular, they are not simply-connected.

References

  1. A. Andrada, M.L. Barberis, I.G. Dotti Miatello, Classification of abelian complex structures on 6-dimensional Lie algebras. J. Lond. Math. Soc. (2) 83(1), 232–255 (2011)

    Google Scholar 

  2. A. Andrada, M.L. Barberis, I.G. Dotti Miatello, G.P. Ovando, Product structures on four dimensional solvable Lie algebras. Homol. Homotopy Appl. 7(1), 9–37 (2005)

    MathSciNet  MATH  Google Scholar 

  3. D. Angella, S. Calamai, A vanishing result for strictly p-convex domains. Ann. Mat. Pura Appl., 16 pp. (2012). DOI:10.1007/s00222-012-0406-3, Online First, http://link.springer.com/article/10.1007/s10231-012-0315-5

  4. D. Angella, S. Calamai, Bott–Chern cohomology and q-complete domains. C. R. Math. Acad. Sci. Paris 351(9–10), 343–348 (2013)

    MathSciNet  MATH  Google Scholar 

  5. A. Andreotti, H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90, 193–259 (1962)

    MathSciNet  MATH  Google Scholar 

  6. D. Angella, H. Kasuya, Bott-chern cohomology of solvmanifolds, arXiv: 1212.5708v3 [math.DG], 2012

    Google Scholar 

  7. M. Audin, J. Lafontaine (eds.), Holomorphic Curves in Symplectic Geometry. Progress in Mathematics, vol. 117 (Birkhäuser Verlag, Basel, 1994)

    Google Scholar 

  8. L. Alessandrini, Correnti positive: uno strumento per l’analisi globale su varietà complesse. Rend. Sem. Mat. Fis. Milano 68(1), 59–120 (1998)

    MathSciNet  MATH  Google Scholar 

  9. L. Alessandrini, Correnti positive e varietà complesse. Rend. Mat. Appl. (7) 30(2), 145–181 (2010)

    Google Scholar 

  10. D.V. Alekseevskiĭ, K. Medori, A. Tomassini, Homogeneous para-Kählerian Einstein manifolds. Uspekhi Mat. Nauk 64(1(385)), 3–50 (2009). Translation in Russ. Math. Surv. 64(1), 1–43 (2009)

    Google Scholar 

  11. Y. Akizuki, S. Nakano, Note on Kodaira-Spencer’s proof of Lefschetz theorems. Proc. Jpn. Acad. 30(4), 266–272 (1954)

    MathSciNet  MATH  Google Scholar 

  12. D. Angella, Cohomologies of certain orbifolds. J. Geom. Phys. 171, 117–126 (2013)

    MathSciNet  Google Scholar 

  13. D. Angella, F.A. Rossi, Cohomology of D-complex manifolds. Differ. Geom. Appl. 30(5), 530–547 (2012)

    MathSciNet  MATH  Google Scholar 

  14. A. Andrada, S. Salamon, Complex product structures on Lie algebras. Forum Math. 17(2), 261–295 (2005)

    MathSciNet  MATH  Google Scholar 

  15. D. Angella, A. Tomassini, Symplectic manifolds and cohomological decomposition. J. Symplectic Geom., arXiv:1211.2565v1 [math.SG] (2012 to appear)

    Google Scholar 

  16. D. Angella, A. Tomassini, Inequalities à la Frölicher and cohomological decompositions, preprint, 2013

    Google Scholar 

  17. D. Angella, A. Tomassini, On the \(\partial \overline{\partial }\)-Lemma and Bott-Chern cohomology. Invent. Math. 192(1), 71–81 (2013)

    MathSciNet  MATH  Google Scholar 

  18. L. Auslander, Discrete uniform subgroups of solvable Lie groups. Trans. Am. Math. Soc. 99, 398–402 (1961)

    MathSciNet  MATH  Google Scholar 

  19. L. Auslander, An exposition of the structure of solvmanifolds. I. Algebraic theory. Bull. Am. Math. Soc. 79(2), 227–261 (1973)

    MathSciNet  MATH  Google Scholar 

  20. L. Auslander, An exposition of the structure of solvmanifolds. II. G-induced flows. Bull. Am. Math. Soc. 79(2), 262–285 (1973)

    Google Scholar 

  21. A. Andreotti, E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Inst. Hautes Études Sci. Publ. Math. 25, 81–130 (1965)

    MathSciNet  Google Scholar 

  22. A. Andreotti, E. Vesentini, Erratum to: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Inst. Hautes Études Sci. Publ. Math. 27, 153–155 (1965)

    MathSciNet  Google Scholar 

  23. W.L. Baily Jr., On the quotient of an analytic manifold by a group of analytic homeomorphisms. Proc. Natl. Acad. Sci. USA 40(9), 804–808 (1954)

    MathSciNet  MATH  Google Scholar 

  24. W.L. Baily Jr., The decomposition theorem for V -manifolds. Am. J. Math. 78(4), 862–888 (1956)

    MathSciNet  MATH  Google Scholar 

  25. W. Ballmann, Lectures on Kähler Manifolds. ESI Lectures in Mathematics and Physics (European Mathematical Society (EMS), Zürich, 2006)

    Google Scholar 

  26. F.A. Belgun, On the metric structure of non-Kähler complex surfaces. Math. Ann. 317(1), 1–40 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Ch. Benson, C.S. Gordon, Kähler and symplectic structures on nilmanifolds. Topology 27(4), 513–518 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Ch. Benson, C.S. Gordon, Kähler structures on compact solvmanifolds. Proc. Am. Math. Soc. 108(4), 971–980 (1990)

    MathSciNet  MATH  Google Scholar 

  29. S. Bochner, Compact groups of differentiable transformations. Ann. Math. (2) 46(3), 372–381 (1945)

    Google Scholar 

  30. C. Bock, On low-dimensional solvmanifolds, arXiv:0903.2926v4 [math.DG], 2009

    Google Scholar 

  31. F.A. Bogomolov, Hamiltonian Kählerian manifolds. Dokl. Akad. Nauk SSSR 243(5), 1101–1104 (1978)

    MathSciNet  Google Scholar 

  32. J.-L. Brylinski, A differential complex for Poisson manifolds. J. Differ. Geom. 28(1), 93–114 (1988)

    MathSciNet  MATH  Google Scholar 

  33. N. Buchdahl, On compact Kähler surfaces. Ann. Inst. Fourier (Grenoble) 49(1), 287–302 (1999)

    Google Scholar 

  34. N. Buchdahl, Algebraic deformations of compact Kähler surfaces. II. Math. Z. 258(3), 493–498 (2008)

    MathSciNet  MATH  Google Scholar 

  35. E. Calabi, On Kähler manifolds with vanishing canonical class, in Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz (Princeton University Press, Princeton, 1957), pp. 78–89

    Google Scholar 

  36. F. Campana, The class \(\mathcal{C}\) is not stable by small deformations. Math. Ann. 290(1), 19–30 (1991)

    MathSciNet  MATH  Google Scholar 

  37. J. Cao, Deformation of Kähler manifolds, arXiv:1211.2058v1 [math.AG], hal-00749923, 2012

    Google Scholar 

  38. E. Cartan, La théorie des groupes finis et continus et l’analysis situs, 1930 (French)

    Google Scholar 

  39. G.R. Cavalcanti, New aspects of the dd c-lemma, Oxford University D. Phil Thesis, 2005, arXiv:math/0501406 [math.DG]

    Google Scholar 

  40. G.R. Cavalcanti, The decomposition of forms and cohomology of generalized complex manifolds. J. Geom. Phys. 57(1), 121–132 (2006)

    MathSciNet  MATH  Google Scholar 

  41. G.R. Cavalcanti, Introduction to Generalized Complex Geometry. Publicações Matemáticas do IMPA [IMPA Mathematical Publications] (Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2007), 26o Colóquio Brasileiro de Matemática [26th Brazilian Mathematics Colloquium]

    Google Scholar 

  42. A. Cannas da Silva, Lectures on Symplectic Geometry. Lecture Notes in Mathematics, vol. 1764 (Springer, Berlin, 2001)

    Google Scholar 

  43. C. Chevalley, S. Eilenberg, Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 63, 85–124 (1948)

    MathSciNet  MATH  Google Scholar 

  44. S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds. Transform. Groups 6(2), 111–124 (2001)

    MathSciNet  MATH  Google Scholar 

  45. S. Console, A. Fino, On the de Rham cohomology of solvmanifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) X(4), 801–818 (2011)

    Google Scholar 

  46. V. Cruceanu, P. Fortuny Ayuso, P.M. Gadea, A survey on paracomplex geometry. Rocky Mt. J. Math. 26(1), 83–115 (1996)

    MathSciNet  MATH  Google Scholar 

  47. L.A. Cordero, M. Fernández, A. Gray, L. Ugarte, Nilpotent complex structures on compact nilmanifolds, in Proceedings of the Workshop on Differential Geometry and Topology, Palermo, 1996, vol. 49 (1997), pp. 83–100

    Google Scholar 

  48. S. Console, A.M. Fino, H. Kasuya, Modifications and cohomologies of solvmanifolds, arXiv:1301.6042v1 [math.DG], 2013

    Google Scholar 

  49. L.A. Cordero, M. Fernández, L. Ugarte, A. Gray, A general description of the terms in the Frölicher spectral sequence. Differ. Geom. Appl. 7(1), 75–84 (1997)

    MATH  Google Scholar 

  50. G.R. Cavalcanti, M. Gualtieri, Generalized complex structures on nilmanifolds. J. Symplectic Geom. 2(3), 393–410 (2004)

    MathSciNet  MATH  Google Scholar 

  51. V. Cortés, T. Mohaupt, Special geometry of Euclidean supersymmetry. III. The local r-map, instantons and black holes. J. High Energy Phys. 7(066), 64 (2009)

    Google Scholar 

  52. S. Console, M. Macrì, Lattices, cohomology and models of six dimensional almost abelian solvmanifolds, arXiv:1206.5977v1 [math.DG], 2012

    Google Scholar 

  53. V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets. J. High Energy Phys. 3(028), 73 pp. (2004) (electronic)

    Google Scholar 

  54. V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry. II. Hypermultiplets and the c-map, J. High Energy Phys. 6(025), 37 pp. (2005) (electronic)

    Google Scholar 

  55. A. Connes, Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62, 257–360 (1985)

    MathSciNet  Google Scholar 

  56. M. Ceballos, A. Otal, L. Ugarte, R. Villacampa, Classification of complex structures on 6-dimensional nilpotent Lie algebras, arXiv:1111.5873v3 [math.DG], 2011

    Google Scholar 

  57. R. Campoamor-Stursberg, Some remarks concerning the invariants of rank one solvable real Lie algebras. Algebra Colloq. 12(3), 497–518 (2005)

    MathSciNet  MATH  Google Scholar 

  58. G. Darboux, Sur le problème de Pfaff. Bull. Sci. Math. 6 14–36, 49–68 (1882)

    Google Scholar 

  59. P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yau manifolds. Ann. Inst. Fourier (Grenoble) 56 (5), 1281–1296 (2006)

    Google Scholar 

  60. P. de Bartolomeis, A. Tomassini, Exotic deformations of Calabi-Yau manifolds (Déformations exotiques des variétés de Calabi-Yau). Ann. l’inst. Fourier 63(2), 391–415 (2013). DOI:10.5802/aif.2764

    MATH  Google Scholar 

  61. J.-P. Demailly, Sur l’identité de Bochner-Kodaira-Nakano en géométrie hermitienne, Séminaire d’analyse. P. Lelong-P. Dolbeault-H. Skoda, Années 1983/1984. Lecture Notes in Mathematics, vol. 1198 (Springer, Berlin, 1986), pp. 88–97

    Google Scholar 

  62. J.-P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2012, Version of Thursday June 21, 2012

  63. A. Diatta, B. Foreman, Lattices in contact lie groups and 5-dimensional contact solvmanifolds, arXiv:0904.3113v1 [math.DG], 2009

    Google Scholar 

  64. P. Deligne, Ph.A. Griffiths, J. Morgan, D.P. Sullivan, Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)

    MathSciNet  MATH  Google Scholar 

  65. P. Dolbeault, Sur la cohomologie des variétés analytiques complexes. C. R. Acad. Sci. Paris 236, 175–177 (1953)

    MathSciNet  MATH  Google Scholar 

  66. J.-P. Demailly, M. Pǎun, Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2) 159(3), 1247–1274 (2004)

    Google Scholar 

  67. G. de Rham, Differentiable Manifolds. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 266. (Springer, Berlin, 1984). Forms, currents, harmonic forms, Translated from the French by F.R. Smith, with an introduction by S.S. Chern

    Google Scholar 

  68. C. Ehresmann, Sur les espaces fibrés différentiables. C. R. Acad. Sci. Paris 224, 1611–1612 (1947)

    MathSciNet  MATH  Google Scholar 

  69. Ch. Ehresmann, Sur la théorie des espaces fibrés. Topologie algébrique, Colloques Internationaux du Centre National de la Recherche Scientifique, no. 12 (Centre de la Recherche Scientifique, Paris, 1949), pp. 3–15.

    Google Scholar 

  70. M.G. Eastwood, G. Vigna Suria, Cohomologically complete and pseudoconvex domains. Comment. Math. Helv. 55(3), 413–426 (1980)

    MathSciNet  MATH  Google Scholar 

  71. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York, 1969)

    Google Scholar 

  72. A. Fino, G. Grantcharov, Properties of manifolds with skew-symmetric torsion and special holonomy. Adv. Math. 189(2), 439–450 (2004)

    MathSciNet  MATH  Google Scholar 

  73. M. Fernández, V. Muñoz, J.A. Santisteban, Cohomologically Kähler manifolds with no Kähler metrics. Int. J. Math. Math. Sci. 2003(52), 3315–3325 (2003)

    MATH  Google Scholar 

  74. Y. Félix, J. Oprea, D. Tanré, Algebraic Models in Geometry. Oxford Graduate Texts in Mathematics, vol. 17 (Oxford University Press, Oxford, 2008)

    Google Scholar 

  75. A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Natl. Acad. Sci. USA 41(9), 641–644 (1955)

    MATH  Google Scholar 

  76. A.M. Fino, A. Tomassini, Non-Kähler solvmanifolds with generalized Kähler structure. J. Symplectic Geom. 7(2), 1–14 (2009)

    MathSciNet  MATH  Google Scholar 

  77. G. Fubini, Sulle metriche definite da una forma Hermitiana. Nota. Ven. Ist. Atti 63((8)6) (1904), 501–513

    Google Scholar 

  78. Ph.A. Griffiths, J. Harris, Principles of Algebraic Geometry. Wiley Classics Library (Wiley, New York, 1994). Reprint of the 1978 original

    Google Scholar 

  79. M. Goze, Y. Khakimdjanov, Nilpotent Lie Algebras. Mathematics and its Applications, vol. 361 (Kluwer, Dordrecht, 1996)

    Google Scholar 

  80. A.M. Gleason, Groups without small subgroups. Ann. Math. (2) 56, 193–212 (1952)

    Google Scholar 

  81. M.-P. Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R), ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.), University of Waterloo, Canada, 1998

    Google Scholar 

  82. Th.G. Goodwillie, Cyclic homology, derivations, and the free loopspace. Topology 24(2), 187–215 (1985)

    MathSciNet  MATH  Google Scholar 

  83. V.V. Gorbatsevich, A.L. Onishchik, E.B. Vinberg, Foundations of Lie Theory and Lie Transformation Groups (Springer, Berlin, 1997). Translated from the Russian by A. Kozlowski, Reprint of the 1993 translation [ıt Lie groups and Lie algebras. I. Encyclopaedia of Mathematical Sciences, 20 (Springer, Berlin, 1993); MR1306737 (95f:22001)]

    Google Scholar 

  84. Ph.A. Griffiths, The extension problem in complex analysis. II. Embeddings with positive normal bundle. Am. J. Math. 88(2), 366–446 (1966)

    MATH  Google Scholar 

  85. M. Gromov, Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)

    MathSciNet  MATH  Google Scholar 

  86. M. Gualtieri, Generalized complex geometry, Oxford University D. Phil Thesis, 2004, arXiv:math/0401221v1 [math.DG]

    Google Scholar 

  87. M. Gualtieri, Generalized geometry and the Hodge decomposition, arXiv:math/0409093v1 [math.DG], 2004

    Google Scholar 

  88. D. Guan, Modification and the cohomology groups of compact solvmanifolds. Electron. Res. Announc. Am. Math. Soc. 13, 74–81 (2007)

    MATH  Google Scholar 

  89. M. Gualtieri, Generalized complex geometry. Ann. Math. (2) 174(1), 75–123 (2011)

    Google Scholar 

  90. V. Guillemin, Symplectic Hodge theory and the dδ-lemma, preprint (Massachusetts Insitute of Technology), 2001

    Google Scholar 

  91. J.-i. Hano, On Kaehlerian homogeneous spaces of unimodular Lie groups. Am. J. Math. 79, 885–900 (1957)

    Google Scholar 

  92. R. Harshavardhan, Geometric structures of Lie type on 5-manifolds, Ph.D. Thesis, Cambridge University, 1996

    Google Scholar 

  93. K. Hasegawa, Minimal models of nilmanifolds. Proc. Am. Math. Soc. 106(1), 65–71 (1989)

    MATH  Google Scholar 

  94. K. Hasegawa, A note on compact solvmanifolds with Kähler structures. Osaka J. Math. 43(1), 131–135 (2006)

    MathSciNet  MATH  Google Scholar 

  95. A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 8(2), 289–331 (1960)

    MathSciNet  MATH  Google Scholar 

  96. H. Hironaka, An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures. Ann. Math. (2) 75(1), 190–208 (1962)

    Google Scholar 

  97. N.J. Hitchin, Generalized Calabi-Yau manifolds. Q. J. Math. 54(3), 281–308 (2003)

    MathSciNet  MATH  Google Scholar 

  98. N.J. Hitchin, Generalized geometry—an introduction, in Handbook of Pseudo-Riemannian Geometry and Supersymmetry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16 (European Mathematical Society, Zürich, 2010), pp. 185–208

    Google Scholar 

  99. F.R. Harvey, H.B. Lawson Jr., An intrinsic characterization of Kähler manifolds. Invent. Math. 74(2), 169–198 (1983)

    MathSciNet  MATH  Google Scholar 

  100. F.R. Harvey, H.B. Lawson Jr., The foundations of p-convexity and p-plurisubharmonicity in riemannian geometry, arXiv:1111.3895 [math.DG], 2011

    Google Scholar 

  101. F.R. Harvey, H.B. Lawson Jr., Geometric plurisubharmonicity and convexity: an introduction. Adv. Math. 230(4–6), 2428–2456 (2012)

    MathSciNet  MATH  Google Scholar 

  102. W.V.D. Hodge, Harmonic integrals associated with algebraic varieties. Proc. Lond. Math. Soc. (2) 39, 249–271 (1935)

    Google Scholar 

  103. W.V.D. Hodge, The Theory and Applications of Harmonic Integrals. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1989). Reprint of the 1941 original, With a foreword by Michael Atiyah

    Google Scholar 

  104. L. Hörmander, \({L}^{2}\) estimates and existence theorems for the \(\bar{\partial }\) operator. Acta Math. 113(1), 89–152 (1965)

    Google Scholar 

  105. L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd edn. North-Holland Mathematical Library, vol. 7 (North-Holland Publishing, Amsterdam, 1990)

    Google Scholar 

  106. J.E. Humphreys, Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9 (Springer, New York, 1978). Second printing, revised

    Google Scholar 

  107. D. Huybrechts, Complex Geometry. Universitext (Springer, Berlin, 2005)

    MATH  Google Scholar 

  108. R. Ibáñez, Y. Rudyak, A. Tralle, L. Ugarte, On certain geometric and homotopy properties of closed symplectic manifolds, in Proceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-Manifolds”, Calgary, AB, 1999, vol. 127 (2003), pp. 33–45

    Google Scholar 

  109. D.D. Joyce, Compact 8-manifolds with holonomy Spin(7). Invent. Math. 123(3), 507–552 (1996)

    MathSciNet  MATH  Google Scholar 

  110. D.D. Joyce, Compact Riemannian 7-manifolds with holonomy G 2. I, II. J. Differ. Geom. 43(2), 291–328, 329–375 (1996)

    Google Scholar 

  111. D.D. Joyce, A new construction of compact 8-manifolds with holonomy Spin(7). J. Differ. Geom. 53(1), 89–130 (1999)

    MathSciNet  MATH  Google Scholar 

  112. D.D. Joyce, Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  113. D.D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry. Oxford Graduate Texts in Mathematics, vol. 12 (Oxford University Press, Oxford, 2007)

    Google Scholar 

  114. E. Kähler, Über eine bemerkenswerte Hermitesche Metrik. Abh. Math. Sem. Univ. Hamburg 9(1), 176–186 (1933)

    Google Scholar 

  115. H. Kasuya, Formality and hard Lefschetz property of aspherical manifolds. Osaka J. Math. 50(2), 439–455 (2013)

    MathSciNet  MATH  Google Scholar 

  116. H. Kasuya, Hodge symmetry and decomposition on non-Kähler solvmanifolds, arXiv:1109.5929v4 [math.DG], 2011

    Google Scholar 

  117. H. Kasuya, De Rham and Dolbeault cohomology of solvmanifolds with local systems, arXiv:1207.3988v3 [math.DG], 2012

    Google Scholar 

  118. H. Kasuya, Degenerations of the Frölicher spectral sequences of solvmanifolds, arXiv:1210.2661v2 [math.DG], 2012

    Google Scholar 

  119. H. Kasuya, Differential Gerstenhaber algebras and generalized deformations of solvmanifolds, arXiv:1211.4188v2 [math.DG], 2012

    Google Scholar 

  120. H. Kasuya, Geometrical formality of solvmanifolds and solvable Lie type geometries, in RIMS Kokyuroku Bessatsu B 39. Geometry of Transformation Groups and Combinatorics (2012), pp. 21–34

    Google Scholar 

  121. H. Kasuya, Minimal models, formality, and hard Lefschetz properties of solvmanifolds with local systems. J. Differ. Geom. 93 (2), 269–297 (2013)

    MathSciNet  MATH  Google Scholar 

  122. A. Kirillov Jr., An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics, vol. 113 (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  123. Y.-H. Kim, R.J. McCann, M. Warren, Pseudo-Riemannian geometry calibrates optimal transportation. Math. Res. Lett. 17 (6), 1183–1197 (2010)

    MathSciNet  MATH  Google Scholar 

  124. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry. Vol. II. Wiley Classics Library (Wiley, New York, 1996). Reprint of the 1969 original, A Wiley-Interscience Publication

    Google Scholar 

  125. K. Kodaira, L. Nirenberg, D.C. Spencer, On the existence of deformations of complex analytic structures. Ann. Math. (2) 68(2), 450–459 (1958)

    Google Scholar 

  126. K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties). Ann. Math. (2) 60, 28–48 (1954)

    Google Scholar 

  127. K. Kodaira, On compact analytic surfaces. III. Ann. Math. (2) 78(1), 1–40 (1963)

    Google Scholar 

  128. K. Kodaira, On the structure of compact complex analytic surfaces. I. Am. J. Math. 86, 751–798 (1964)

    MathSciNet  MATH  Google Scholar 

  129. K. Kodaira, Complex Manifolds and Deformation of Complex Structures. English edn. Classics in Mathematics (Springer, Berlin, 2005). Translated from the 1981 Japanese original by Kazuo Akao

    Google Scholar 

  130. J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque (1985), no. Numero Hors Serie. The mathematical heritage of Élie Cartan (Lyon, 1984), 257–271

    Google Scholar 

  131. M. Krahe, Para-pluriharmonic maps and twistor spaces, in Handbook of Pseudo-Riemannian Geometry and Supersymmetry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16 (European Mathematical Society, Zürich, 2010), pp. 497–557

    Google Scholar 

  132. K. Kodaira, D.C. Spencer, On deformations of complex analytic structures. I, II. Ann. Math. (2) 67(2, 3), 328–401, 403–466 (1958)

    Google Scholar 

  133. K. Kodaira, D.C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. (2) 71(1), 43–76 (1960)

    Google Scholar 

  134. M. Kuranishi, On the locally complete families of complex analytic structures. Ann. Math. (2) 75(3), 536–577 (1962)

    Google Scholar 

  135. M. Kuranishi, New proof for the existence of locally complete families of complex structures, in Proceedings of Conference on Complex Analysis, Minneapolis, 1964 (Springer, Berlin, 1965), pp. 142–154

    Google Scholar 

  136. A. Lamari, Courants kählériens et surfaces compactes. Ann. Inst. Fourier (Grenoble) 49(1, vii, x), 263–285 (1999)

    Google Scholar 

  137. S. Lie, Theorie der Transformationsgruppen I. Math. Ann. 16(4), 441–528 (1880)

    MathSciNet  MATH  Google Scholar 

  138. Y. Lin, Symplectic harmonic theory and the Federer-Fleming deformation theorem, arXiv:1112.2442v2 [math.SG], 2013

    Google Scholar 

  139. G. Lupton, J. Oprea, Symplectic manifolds and formality. J. Pure Appl. Algebra 91(1–3), 193–207 (1994)

    MathSciNet  MATH  Google Scholar 

  140. C. LeBrun, Y.S. Poon, Twistors, Kähler manifolds, and bimeromorphic geometry. II. J. Am. Math. Soc. 5(2), 317–325 (1992)

    MathSciNet  MATH  Google Scholar 

  141. M. Macrì, Cohomological properties of unimodular six dimensional solvable Lie algebras. Differ. Geom. Appl. 31(1), 112–129 (2013)

    MATH  Google Scholar 

  142. L. Magnin, Sur les algèbres de Lie nilpotentes de dimension ≤ 7. J. Geom. Phys. 3(1), 119–144 (1986)

    MathSciNet  MATH  Google Scholar 

  143. A.I. Mal’tsev, On a class of homogeneous spaces. Izv. Akad. Nauk SSSR Ser. Mat. 13, 9–32 (1949). Translation in Am. Math. Soc. Translation 1951(39), 33 pp. (1951)

    Google Scholar 

  144. M. Manetti, Lectures on deformations of complex manifolds (deformations from differential graded viewpoint). Rend. Mat. Appl. (7) 24(1), 1–183 (2004)

    Google Scholar 

  145. Y. Matsushima, On the discrete subgroups and homogeneous spaces of nilpotent Lie groups. Nagoya Math. J. 2, 95–110 (1951)

    MathSciNet  MATH  Google Scholar 

  146. O. Mathieu, Harmonic cohomology classes of symplectic manifolds. Comment. Math. Helv. 70(1), 1–9 (1995)

    MathSciNet  MATH  Google Scholar 

  147. J. McCleary, A User’s Guide to Spectral Sequences, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 58 (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  148. S.A. Merkulov, Formality of canonical symplectic complexes and Frobenius manifolds. Int. Math. Res. Not. 14, 727–733 (1998)

    MathSciNet  Google Scholar 

  149. M.L. Michelsohn, On the existence of special metrics in complex geometry. Acta Math. 149(3–4), 261–295 (1982)

    MathSciNet  MATH  Google Scholar 

  150. J. Milnor, Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)

    MathSciNet  MATH  Google Scholar 

  151. Y. Miyaoka, Kähler metrics on elliptic surfaces. Proc. Jpn. Acad. 50(8), 533–536 (1974)

    MathSciNet  MATH  Google Scholar 

  152. J. Morrow, K. Kodaira, Complex Manifolds (AMS Chelsea Publishing, Providence, 2006). Reprint of the 1971 edition with errata

    Google Scholar 

  153. B.G. Moǐšezon, On n-dimensional compact complex manifolds having n algebraically independent meromorphic functions. I, II, III. Izv. Akad. Nauk SSSR Ser. Mat. 30(1, 2, 3), 133–174, 345–386, 621–656 (1966). Translation in Am. Math. Soc., Transl., II. Ser. 63, 51–177 (1967)

    Google Scholar 

  154. V.V. Morozov, Classification of nilpotent Lie algebras of sixth order. Izv. Vysš. Učebn. Zaved. Matematika 4(5), 161–171 (1958)

    Google Scholar 

  155. A. Moroianu, Lectures on Kähler Geometry. London Mathematical Society Student Texts, vol. 69 (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  156. G.D. Mostow, Factor spaces of solvable groups. Ann. Math. (2) 60(1), 1–27 (1954)

    Google Scholar 

  157. G.D. Mostow, Errata, “Factor spaces of solvable groups.” Ann. Math. (2) 66(3), 590 (1957)

    Google Scholar 

  158. G.M. Mubarakzjanov, Classification of real structures of Lie algebras of fifth order (classifkaziya vehestvennych structur algebrach lie pyatovo poryadko). Izv. Vysš. Učebn. Zaved. Matematika 34 (3), 99–106 (1963)

    MathSciNet  Google Scholar 

  159. G.M. Mubarakzjanov, Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element (classifkaziya rasreshimych structur algebrach lie shestovo poryadka a odnim nenilpoentnym bazisnym elementom). Izv. Vysš. Učebn. Zaved. Matematika 35(4), 104–116 (1963)

    MathSciNet  Google Scholar 

  160. G.M. Mubarakzjanov, O rasreshimych algebrach Lie (On solvable Lie algebras). Izv. Vysš. Učehn. Zaved. Matematika 32 (1), 114–123 (1963)

    MathSciNet  Google Scholar 

  161. D. Montgomery, L. Zippin, Small subgroups of finite-dimensional groups. Ann. Math. (2) 56, 213–241 (1952)

    Google Scholar 

  162. A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds. Ann. Math. (2) 65(3), 391–404 (1957)

    Google Scholar 

  163. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. (2) 59, 531–538 (1954)

    Google Scholar 

  164. D. Popovici, Limits of projective manifolds under holomorphic deformations, arXiv:0910.2032v1 [math.AG], 2009

    Google Scholar 

  165. D. Popovici, Limits of Moishezon manifolds under holomorphic deformations, arXiv:1003.3605v1 [math.AG], 2010

    Google Scholar 

  166. D. Popovici, Deformation openness and closedness of various classes of compact complex manifolds; examples. Ann. Sc. Norm. Super. Pisa Cl. Sci. DOI:10.2422/2036-2145.201110_008, arXiv:1102.1687v1 [math.AG] (2011 to appear)

    Google Scholar 

  167. D. Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics. Invent. Math., 1–20 (2013) (English), Online First, http://dx.doi.org/10.1007/s00222-013-0449-0

  168. M.S. Raghunathan, Discrete Subgroups of Lie Groups (Springer, New York, 1972). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68

    Google Scholar 

  169. J. Raissy, Normalizzazione di campi vettoriali olomorfi, Tesi di Laurea Specialistica in Matematica, Università di Pisa, 2006

    Google Scholar 

  170. S. Rollenske, Geometry of nilmanifolds with left-invariant complex structure and deformations in the large. Proc. Lond. Math. Soc. (3) 99(2), 425–460 (2009)

    Google Scholar 

  171. S. Rollenske, Lie-algebra Dolbeault-cohomology and small deformations of nilmanifolds. J. Lond. Math. Soc. (2) 79(2), 346–362 (2009)

    Google Scholar 

  172. S. Rollenske, The Kuranishi space of complex parallelisable nilmanifolds. J. Eur. Math. Soc. (JEMS) 13(3), 513–531 (2011)

    Google Scholar 

  173. F.A. Rossi, On deformations of D-manifolds and CR D-manifolds. J. Geom. Phys. 62(2), 464–478 (2012)

    MathSciNet  MATH  Google Scholar 

  174. F.A. Rossi, On Ricci-flat D-Kähler manifolds, preprint, 2012

    Google Scholar 

  175. F.A. Rossi, D-complex structures on manifolds: cohomological properties and deformations, Ph.D. Thesis, Università di Milano Bicocca, 2013, http://hdl.handle.net/10281/41976

  176. W. Rothstein, Zur Theorie der analytischen Mannigfaltigkeiten im Raume von n komplexen Veränderlichen. Math. Ann. 129(1), 96–138 (1955)

    MathSciNet  MATH  Google Scholar 

  177. S.M. Salamon, Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157(2–3), 311–333 (2001)

    MathSciNet  MATH  Google Scholar 

  178. I. Satake, On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. USA 42(6), 359–363 (1956)

    MathSciNet  MATH  Google Scholar 

  179. J.A. Schouten, Über unitäre Geometrie. Proc. Amsterdam 32, 457–465 (1929)

    MATH  Google Scholar 

  180. M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 [math.AG], 2007

    Google Scholar 

  181. J.-P. Serre, Un théorème de dualité. Comment. Math. Helv. 29(9), 9–26 (1955)

    MathSciNet  MATH  Google Scholar 

  182. J.-P. Sha, p-convex Riemannian manifolds. Invent. Math. 83(3), 437–447 (1986)

    Google Scholar 

  183. Y.T. Siu, Every K3 surface is Kähler. Invent. Math. 73(1), 139–150 (1983)

    MathSciNet  MATH  Google Scholar 

  184. E. Study, Kürzeste Wege im komplexen Gebiet. Math. Ann. 60(3), 321–378 (1905)

    MathSciNet  MATH  Google Scholar 

  185. D.P. Sullivan, Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1978)

    Google Scholar 

  186. J.A. Schouten, D. van Dantzig, Über unitäre Geometrie. Math. Ann. 103(1), 319–346 (1930)

    MathSciNet  MATH  Google Scholar 

  187. G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, in Mathematical Aspects of String Theory (San Diego, Calif., 1986). Advanced Series in Mathematical Physics, vol. 1 (World Scientific Publishing, Singapore, 1987), pp. 629–646

    Google Scholar 

  188. G. Tian, Canonical Metrics in Kähler Geometry. Lectures in Mathematics ETH Zürich (Birkhäuser Verlag, Basel, 2000). Notes taken by Meike Akveld

    Google Scholar 

  189. A. Tralle, J. Kedra, Compact completely solvable Kähler solvmanifolds are tori. Int. Math. Res. Not. 15, 727–732 (1997)

    MathSciNet  Google Scholar 

  190. A. Tralle, J. Oprea, Symplectic Manifolds with No Kähler Structure. Lecture Notes in Mathematics, vol. 1661 (Springer, Berlin, 1997)

    Google Scholar 

  191. A.N. Todorov, The Weil-Petersson geometry of the moduli space of \(\mathrm{SU}(n\,\geq \,3)\) (Calabi-Yau) manifolds. I. Commun. Math. Phys. 126(2), 325–346 (1989)

    MATH  Google Scholar 

  192. A. Tomasiello, Reformulating supersymmetry with a generalized Dolbeault operator. J. High Energy Phys. 2, 010, 25 (2008)

    Google Scholar 

  193. P. Turkowski, Solvable Lie algebras of dimension six. J. Math. Phys. 31(6), 1344–1350 (1990)

    MathSciNet  MATH  Google Scholar 

  194. L.-S. Tseng, S.-T. Yau, Generalized cohomologies and supersymmetry, arXiv:1111.6968v1 [hep-th], 2011

    Google Scholar 

  195. L.-S. Tseng, S.-T. Yau, Cohomology and Hodge theory on symplectic manifolds: I. J. Differ. Geom. 91(3), 383–416 (2012)

    MathSciNet  MATH  Google Scholar 

  196. L.-S. Tseng, S.-T. Yau, Cohomology and Hodge theory on symplectic manifolds: II. J. Differ. Geom. 91(3), 417–443 (2012)

    MathSciNet  MATH  Google Scholar 

  197. L. Ugarte, R. Villacampa, Non-nilpotent complex geometry of nilmanifolds and heterotic supersymmetry, arXiv:0912.5110v2 [math.DG], 2009

    Google Scholar 

  198. I. Vaisman, Reduction and submanifolds of generalized complex manifolds. Differ. Geom. Appl. 25(2), 147–166 (2007)

    MathSciNet  MATH  Google Scholar 

  199. E. Vesentini, Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Notes by M.S. Raghunathan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 39 (Tata Institute of Fundamental Research, Bombay, 1967)

    Google Scholar 

  200. È.B. Vinberg (ed.), Lie Groups and Lie Algebras, III. Encyclopaedia of Mathematical Sciences, vol. 41 (Springer, Berlin, 1994). Structure of Lie groups and Lie algebras, A translation of ıt Current problems in mathematics. Fundamental directions, vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [MR1056485 (91b:22001)], Translation by V. Minachin [V.V. Minakhin], Translation edited by A.L. Onishchik and È.B. Vinberg

    Google Scholar 

  201. C. Voisin, Théorie de Hodge et géométrie algébrique complexe, in Cours Spécialisés [Specialized Courses], vol. 10 (Société Mathématique de France, Paris, 2002)

    Google Scholar 

  202. C. Voisin, On the homotopy types of compact Kähler and complex projective manifolds. Invent. Math. 157(2), 329–343 (2004)

    MathSciNet  MATH  Google Scholar 

  203. C. Voisin, On the homotopy types of Kähler manifolds and the birational Kodaira problem. J. Differ. Geom. 72(1), 43–71 (2006)

    MathSciNet  MATH  Google Scholar 

  204. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics, vol. 94 (Springer, New York, 1983). Corrected reprint of the 1971 edition

    Google Scholar 

  205. A. Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267 (Hermann, Paris, 1958)

    Google Scholar 

  206. R.O. Wells Jr., Differential Analysis on Complex Manifolds, 3rd edn. Graduate Texts in Mathematics, vol. 65 (Springer, New York, 2008). With a new appendix by Oscar Garcia-Prada

    Google Scholar 

  207. H. Weyl, The Classical Groups. Princeton Landmarks in Mathematics (Princeton University Press, Princeton, 1997). Their invariants and representations, Fifteenth printing, Princeton Paperbacks

    Google Scholar 

  208. H. Wu, Manifolds of partially positive curvature. Indiana Univ. Math. J. 36(3), 525–548 (1987)

    MathSciNet  MATH  Google Scholar 

  209. D. Yan, Hodge structure on symplectic manifolds. Adv. Math. 120(1), 143–154 (1996)

    MathSciNet  MATH  Google Scholar 

  210. S.-T. Yau, Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74(5), 1798–1799 (1977)

    MATH  Google Scholar 

  211. S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angella, D. (2014). Preliminaries on (Almost-)Complex Manifolds. In: Cohomological Aspects in Complex Non-Kähler Geometry. Lecture Notes in Mathematics, vol 2095. Springer, Cham. https://doi.org/10.1007/978-3-319-02441-7_1

Download citation

Publish with us

Policies and ethics