Skip to main content

Quasi-Periodic Flows of Viscoelastic Fluids in Straight Tubes

  • Chapter
  • First Online:
Developments in the Flow of Complex Fluids in Tubes

Abstract

The effect of pressure gradient oscillations and longitudinal and transversal boundary oscillations on the flow of non-linearly viscoelastic fluids in circular tubes driven by a constant mean pressure gradient is discussed. Flow enhancement and anomalous flows due to frequency cancellation of superposed boundary waves and resonance like behavior due to the coupling of the viscoelastic and viscous properties leading to drastic enhancement of the instantaneous flow velocities, order of magnitude larger increases at certain frequencies of the driving quasi-periodic pressure gradient oscillating about a zero mean is reviewed. Mean secondary flows of non-linear viscoelastic fluids driven by pulsating pressure gradients in straight tubes of non-circular cross section are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siginer DA (2013) Stability of non-linear constitutive formulations for viscoelastic fluids. Springer, New York, NY

    Google Scholar 

  2. Langlois WE, Rivlin RS (1963) Slow steady – state flow of viscoelastic fluids through non-circular tubes. Rend Math 22:169–185

    MATH  MathSciNet  Google Scholar 

  3. Coleman BD, Noll W (1960) An approximation theorem for functionals with applications in continuum mechanics. Arch Rat Mech Anal 6(1):355–370

    Article  MATH  MathSciNet  Google Scholar 

  4. Ramaprian BR, Tu SW (1980) An experimental study of oscillatory pipe flow at transitional Reynolds numbers. J Fluid Mech 100:513–544

    Article  Google Scholar 

  5. Tu SW, Ramaprian BR (1983) Fully developed periodic turbulent pipe flow in a tube. J Fluid Mech 137:31–58

    Article  Google Scholar 

  6. Shemer L, Kit E (1984) An experimental investigation of the quasi-steady turbulent pulsating flow in a pipe. Phys Fluids 27:72–76

    Article  Google Scholar 

  7. Shemer L, Wygnanski I, Kit E (1985) Pulsating flow in a pipe. J Fluid Mech 153:313–337

    Article  Google Scholar 

  8. Sexl T (1930) Ueber den von E. G. Richardson entdeckten Annulareffect. Z Phys 61:349–362

    Article  MATH  Google Scholar 

  9. Lambossy P (1952) Oscillations Forcées d’un Liquide Incompressible et Visqueux dans un Tube Rigide et Horizontal. Calcul de la Force de Frottement. Helvet Phys Acta 25:371–386

    MATH  MathSciNet  Google Scholar 

  10. Womersley JR (1955) Oscillatory motion of a viscous liquid in a thin-walled elastic tube – I: the linear approximation for long waves. Phil Mag 46:199–221

    MATH  MathSciNet  Google Scholar 

  11. Uchida S (1956) Pulsating viscous flow superposed on the steady laminar motion. Z Angew Math Phys 7:403–422

    Article  MATH  MathSciNet  Google Scholar 

  12. Pipkin AC (1964) Alternating flow of non-Newtonian fluids in tubes of arbitrary cross-section. Arch Rat Mech Anal 15(1):1–13

    Article  MATH  MathSciNet  Google Scholar 

  13. Etter I, Showalter WR (1965) Unsteady flow of an oldroyd fluid in a circular tube. Tran Soc Rheol 9(2):351–369

    Article  Google Scholar 

  14. Lanir Y, Rubin H (1971) Oscillatory flow of linear viscoelastic fluids in thin-walled elastico-viscous fluids. Rheol Acta 10:467–472

    MATH  Google Scholar 

  15. Walters K, Townsend P (1968) The flow of viscous and elastico-viscous liquids in straight pipes under a varying pressure gradient. Proc the 5th Int Cong Rheol, Kyoto 1968, 4: 471–483

    Google Scholar 

  16. Barnes HA, Townsend P, Walters K (1971) On pulsatile flow of non-Newtonian liquids. Rheol Acta 10:517–527

    Google Scholar 

  17. Edwards MF, Nellist DA, Wilkinson WR (1972) Pulsating flow of non-Newtonian fluids in pipes. Chem Eng Sci 27(3):545–553

    Article  Google Scholar 

  18. Townsend P (1973) Numerical solutions of some unsteady flows of elastico-viscous liquids. Rheol Acta 12(1):13–18

    Article  MATH  Google Scholar 

  19. DaVies JM, Bhumiratana S, Bird RB (1978) Elastic and inertial effects in pulsatile flow of polymeric liquids in circular tubes. J Nonnewton Fluid Mech 3(3):237–259

    Article  MATH  Google Scholar 

  20. Böhme G, Nonn G (1979) Instätionare rohrströmung viscoelasticher flüssigkeiten, maβnahmen zur durchsatzsteigerung. Ingenieur Archiv 48:35–49

    Article  MATH  Google Scholar 

  21. Manero O, Walters K (1980) On elastic effects in unsteady pipe flows. Rheol Acta 19(3):277–284

    Article  MATH  Google Scholar 

  22. Phan-Thien N (1978) On pulsatile flow of polymeric liquids. J Nonnewton Fluid Mech 4:167–176

    Article  MATH  Google Scholar 

  23. Phan-Thien N (1980) Flow enhancement mechanisms of a pulsating flow of non-Newtonian liquids. Rheol Acta 19(3):285–290

    Article  MathSciNet  Google Scholar 

  24. Phan-Thien N (1981) On a pulsating flow of polymeric fluids: strain-dependent memory kernels. J Rheol 25(3):293–314

    Article  MATH  MathSciNet  Google Scholar 

  25. Vlastos G, Lerche D, Koch B, Samba O, Pohl M (1997) The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions. Rheol Acta 36(2):160–172

    Article  Google Scholar 

  26. Huilgol RR, Phan-Thien N (1986) Recent advances in the continuum mechanics of viscoelastic liquids. Int J Eng Sci 24(2):161–261

    Article  MATH  MathSciNet  Google Scholar 

  27. Sundstrom DW, Kaufman A (1977) Pulsating flow of polymer solutions. Ind Eng Chem Proc Des Dev 16:320–325

    Article  Google Scholar 

  28. Siginer DA (1991) On the pulsating pressure gradient driven flow of viscoelastic liquids. J Rheol 35(2):271–311

    Article  MATH  MathSciNet  Google Scholar 

  29. Siginer DA (1991) Oscillating flow of a simple fluid in a pipe. Int J Eng Sci 29(12):1557–1567

    Article  MATH  Google Scholar 

  30. Siginer DA (1993) Memory integral constitutive equations in periodic flows and rheometry. Int J Polym Mater 21:45–56

    Article  Google Scholar 

  31. Green AE, Rivlin RS (1957) The mechanics of non-linear materials with memory, Part I. Arch Rat Mech Anal 1(1):1–21

    Article  MATH  MathSciNet  Google Scholar 

  32. Joseph DD (1976) Stability of fluid motions II. Springer, Berlin

    MATH  Google Scholar 

  33. Booij HC (1968) Influence of superimposed steady shear flow on the dynamic properties of non-Newtonian fluids. Rheol Acta 7(3):202–209

    Article  Google Scholar 

  34. Booij HC (1970) Effect of superimposed steady shear flow on dynamic properties of polymeric fluids. PhD thesis, Leiden

    Google Scholar 

  35. Bernstein B (1969) Small shearing oscillations superposed on large steady shear of BKZ fluid. Int J Non Lin Mech 4(2):183–200

    Article  MATH  Google Scholar 

  36. Bernstein B, Fosdick RL (1970) On four rheological relations. Rheol Acta 9(2):186–193

    Article  MATH  Google Scholar 

  37. Jones TER, Walters K (1971) The behavior of materials under combined steady and oscillatory shear. J Phys A Gen Phys 4(1):85–100

    Article  Google Scholar 

  38. Zahorski S (1972) Flows with proportional stretch history. Arch Mech Stos 24:681

    MATH  MathSciNet  Google Scholar 

  39. Zahorski S (1973) Motions with superposed proportional stretch histories as applied to combined steady and oscillatory flows of simple fluids. Arch Mech Stos 25:575

    MATH  Google Scholar 

  40. Goldstein C, Schowalter WR (1973) Non-linear effects in the unsteady flow of viscoelastic fluids. Rheol Acta 12(2):253–262

    Article  Google Scholar 

  41. Manero O, Mena B (1977) An interesting effect in non-Newtonian flow in oscillating pipes. Rheol Acta 16(5):573–576

    Article  Google Scholar 

  42. Manero O, Mena B, Valenzuela R (1978) Further developments in non-Newtonian flow in oscillating pipes. Rheol Acta 17(6):693–697

    Article  Google Scholar 

  43. Simmons JM (1968) Dynamic modulus of polyisobuthylene solutions in superposed steady shear flow. Rheol Acta 7(2):184–188

    Article  Google Scholar 

  44. Tanner RI, Williams G (1971) On the orthogonal superposition of simple shearing and small strain oscillatory motions. Rheol Acta 10:528–538

    Google Scholar 

  45. Kazakia JY, Rivlin RS (1978) The influence of vibration on Poiseuille flow of a non-Newtonian fluid, I. Rheol Acta 17(3):210–226

    Article  MATH  Google Scholar 

  46. Kazakia JY, Rivlin RS (1979) The influence of vibration on Poiseuille flow of a non-Newtonian fluid II. Rheol Acta 18(2):244–255

    Article  MATH  Google Scholar 

  47. Joseph DD (1981) Instability of the rest state of fluids of arbitrary grade greater than one. Arch Ration Mech Anal 75(3):251–256

    Article  MATH  Google Scholar 

  48. Renardy M (1984) On the domain space for constitutive laws in linear viscoelasticity. Arch Ration Mech Anal 85(1):21–26

    Article  MATH  MathSciNet  Google Scholar 

  49. Phan-Thien N (1980) The effects of random longitudinal vibration on pipe flow of a non-Newtonian liquid. Rheol Acta 19(5):539–547

    Article  MATH  MathSciNet  Google Scholar 

  50. Phan-Thien N (1981) The influence of random longitudinal vibration on channel and pipe flows of a slightly non-Newtonian liquid. J Appl Mech 48:661–664

    Article  MATH  Google Scholar 

  51. Wong CM, Isayev AI (1989) Orthogonal superposition of small and large amplitude oscillations upon steady shear flow of polymer fluids. Rheol Acta 28(2):176–189

    Article  Google Scholar 

  52. Kwon Y, Leonov AI (1993) Remarks on orthogonal superposition of small amplitude oscillations on steady shear flow. Rheol Acta 32(1):108–112

    Article  Google Scholar 

  53. Böhme G, Voss R (1987) Unsteady shear flow of non-linear viscoelastic fluids with finite elements. J Nonnewton Fluid Mech 23:321–333

    Article  MATH  Google Scholar 

  54. Siginer DA (1991) On some nearly viscometric flows. Rheol Acta 30(5):447–473

    Article  Google Scholar 

  55. Siginer DA (1992) On the effect of boundary vibration on poiseuille flow of an elastico-viscous liquid. J Fluid Struct 6:719–748

    Article  Google Scholar 

  56. Siginer DA, Valenzuela-Rendon A (1995) Unsteady non-viscometric flows in tubes driven by rotational boundary waves-I: longitudinal field. Int J Eng Mech 33(5):731–756

    MATH  Google Scholar 

  57. Andrienko YA, Siginer DA, Yanovsky YG (2000) Resonance behavior of viscoelastic fluids in Poiseuille flow and application to flow enhancement. Int J Non Lin Mech 35:95–102

    Article  MATH  MathSciNet  Google Scholar 

  58. Fredrickson AG (1964) Principles and applications of rheology. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  59. Siginer DA (1991) Anomolous steady flows in a tube. Rheol Acta 30(5):474–479

    Article  Google Scholar 

  60. Siginer DA, Valenzuela-Rendon A (1993) Energy considerations in the flow enhancement of viscoelastic liquids. J Appl Mech 60(2):344–352

    Article  MATH  Google Scholar 

  61. Mai T-Z, Davies AMJ (1996) Laminar pulsatile two-phase non-Newtonian flow through a pipe. Comput Fluids 25(1):77–93

    Article  MATH  Google Scholar 

  62. Casanellas L, Ortín J (2011) Laminar oscillatory flow of Maxwell and oldroyd-b fluids: theoretical analysis. J Nonnewton Fluid Mech 166(23–24):1315–1326

    Article  MATH  Google Scholar 

  63. Casanellas L, Ortín J (2012) Experiments on the laminar oscillatory flow of wormlike micellar solutions. Rheol Acta 51(6):545–557

    Article  Google Scholar 

  64. Mohyuddin MR, Götz T (2005) Resonance behaviour of viscoelastic fluids in Poiseuille flow in the presence of a transversal magnetic field. Int J Numer Meth Fluid 49(8):837–847

    Article  MATH  Google Scholar 

  65. Torralba M, Castrejón-Pita JR, Castrejón-Pita AA, Huelsz G, del Río JA, Ortín J (2005) Measurements of the bulk and interfacial velocity profiles in oscillating Newtonian and Maxwellian fluids. Phys Rev E 72(1):016308

    Article  Google Scholar 

  66. Torralba M, Castrejón-Pita AA, Hernández G, Huelsz G, del Río JA, Ortín J (2007) Instabilities in the oscillatory flow of a complex fluid. Phys Rev E 75(5):056307

    Article  Google Scholar 

  67. Letelier M, Siginer DA, Caceres M (2002) Pulsating flow of viscoelastic fluids in tubes of arbitrary shape, Part I: longitudinal field. Int J Non Lin Mech 37(2):369–393

    Article  MATH  Google Scholar 

  68. Siginer DA, Letelier M (2002) Pulsating flow of viscoelastic fluids in tubes of arbitrary shape, Part II: secondary flows. Int J Non Lin Mech 37(2):395–407

    Article  MATH  Google Scholar 

  69. Beavers GS (1976) The free surface on a simple fluid between cylinders undergoing torsional oscillations, Part II: experiments. Arch Ration Mech Anal 62(4):323–352

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siginer, D.A. (2015). Quasi-Periodic Flows of Viscoelastic Fluids in Straight Tubes. In: Developments in the Flow of Complex Fluids in Tubes. Springer, Cham. https://doi.org/10.1007/978-3-319-02426-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02426-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02425-7

  • Online ISBN: 978-3-319-02426-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics