Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The aesthetic quality and durability of external building envelope could be seriously impaired by the development of microorganisms, which will colonise building materials whenever a suitable combination of dampness, light and “bioreceptivity” of the substrate occurs. The control of biodeterioration in buildings includes measures useful to eliminate the presence of microorganisms and, when possible, to delay their recurrence. The difficulty lies in applying methods that are effective against biodeteriogens but that do not have interaction with the materials of the substrates. This chapter outlines some of the consolidated or innovative approaches which aim to give a concrete answer to the biological problem in buildings, acting both on the microorganisms already disseminated and on the main causes of development. Several methods may be used, in function of the type of organism present, the materials of the substrate and its state of preservation, the construction methods of the building and the freedom and economy of the intervention. Among the traditional methods, mechanical, chemical and physical strategies for the removal of biodeteriogens have been mentioned, while a more detailed study will be done on the use of biocides and water repellents that directly act on the material to prevent it from becoming fertile ground for microorganism development. Among the innovative methods, the use of engineered nanoparticles as additives to envelope finishing materials is catching on. Strategies that include a set of practical design, construction and use of buildings, which allow acting on the environmental conditions that favour the proliferation of microorganisms will be finally reported as sustainable actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70:295–310. doi:10.1016/S0038-092X(00)00089-X

    Article  Google Scholar 

  • Akbari H, Menon S, Rosenfeld A (2008) Global cooling: increasing world-wide urban albedos to offset CO2. Clim Change 94:275–286. doi:10.1007/s10584-008-9515-9

    Article  Google Scholar 

  • ANSI/ASHRAE (2003) STANDARD 62.2-2003 Ventilation and acceptable indoor air quality in low-rise residential buildings

    Google Scholar 

  • Balzarotti-Kammlein R (1999) An innovative water-compatible formulation of Algophase® for treatment of mortars. In: Proceedings of the international conference on microbiology and conservation of microbes and art, Florence, pp 16–19

    Google Scholar 

  • Bester K, Lamani X (2010) Determination of biocides as well as some biocide metabolites from facade run-off waters by solid phase extraction and high performance liquid chromatographic separation and tandem mass spectrometry detection. J Chromatogr A 1217:5204–5214. doi:10.1016/j.chroma.2010.06.020

    Article  Google Scholar 

  • Bretz SE, Akbari H (1997) Long-term performance of high-albedo roof coatings. Energy Build 25:159–167. doi:10.1016/S0378-7788(96)01005-5

    Article  Google Scholar 

  • Cerolini S, D’Orazio M, Di Perna C, Stazi A (2009) Moisture buffering capacity of highly absorbing materials. Energy Build 41:164–168. doi:10.1016/j.enbuild.2008.08.006

    Article  Google Scholar 

  • European Parliament (1998) Directive 98/8/CE of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market

    Google Scholar 

  • European Parliament (2004) Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amendi

    Google Scholar 

  • European Parliament (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC)

    Google Scholar 

  • Fonseca AJ, Pina F, Macedo MF et al (2010) Anatase as an alternative application for preventing biodeterioration of mortars: evaluation and comparison with other biocides. Int Biodeterior Biodegradation 64:388–396. doi:10.1016/j.ibiod.2010.04.006

    Article  Google Scholar 

  • Galvin R (2010) Solving mould and condensation problems: a dehumidifier trial in a suburban house in Britain. Energy Build 42:2118–2123. doi:10.1016/j.enbuild.2010.07.001

    Article  Google Scholar 

  • Gaylarde CC, Morton LHG, Loh K, Shirakawa MA (2011) Biodeterioration of external architectural paint films—a review. Int Biodeterior Biodegradation 65:1189–1198. doi:10.1016/j.ibiod.2011.09.005

    Article  Google Scholar 

  • Gladis F, Schumann R (2011) Influence of material properties and photocatalysis on phototrophic growth in multi-year roof weathering. Int Biodeterior Biodegradation 65:36–44. doi:10.1016/j.ibiod.2010.05.014

    Article  Google Scholar 

  • Gladis F, Eggert A, Karsten U, Schumann R (2010) Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles. Biofouling 26:89–101

    Article  Google Scholar 

  • Graziani L, Quagliarini E, Osimani A et al (2013) Evaluation of inhibitory effect of TiO2 nanocoatings against microalgal growth on clay brick façades under weak UV exposure conditions. Build Environ 64:38–45. doi:10.1016/j.buildenv.2013.03.003

    Article  Google Scholar 

  • Gutarowska B, Skora J, Zduniak K, Rembisz D (2012) Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int Biodeterior Biodegradation 68:7–17. doi:10.1016/j.ibiod.2011.12.002

    Article  Google Scholar 

  • Haleem Khan AA, Mohan Karuppayil S (2012) Fungal pollution of indoor environments and its management. Saudi J Biol Sci 19:405–426. doi:10.1016/j.sjbs.2012.06.002

    Article  Google Scholar 

  • Hameury S (2005) Moisture buffering capacity of heavy timber structures directly exposed to an indoor climate: a numerical study. Build Environ 40:1400–1412. doi:10.1016/j.buildenv.2004.10.017

    Article  Google Scholar 

  • Hameury S, Lundström T (2004) Contribution of indoor exposed massive wood to a good indoor climate: in situ measurement campaign. Energy Build 36:281–292. doi:10.1016/j.enbuild.2003.12.003

    Article  Google Scholar 

  • ISO/TS 27687 (2008) Nanotechnologies—Terminology and definitions for nano-objects—Nanoparticle, nanofibre and nanoplate

    Google Scholar 

  • Janssen H, Roels S (2009) Qualitative and quantitative assessment of interior moisture buffering by enclosures. Energy Build 41:382–394. doi:10.1016/j.enbuild.2008.11.007

    Article  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. doi:10.1016/j.tox.2009.08.016

    Article  Google Scholar 

  • Kaiser J-P, Zuin S, Wick P (2013) Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. Sci Total Environ 442:282–289. doi:10.1016/j.scitotenv.2012.10.009

    Article  Google Scholar 

  • Krus M, Fitz C, Holm A, Sedlbauer K (2006) Prevention of algae and mould growth on facades by coatings with lowered long-wave emission. Report, Fraunhofer Institut Bauphysik, Stuttgart, Germany

    Google Scholar 

  • Kuenzel H, Sedlbauer K (2007) Hygrothermal effects of infrared-reflecting layers. Report, Fraunhofer Institut Bauphysik, Stuttgart, Germany

    Google Scholar 

  • Kuenzel H, Holm A, Sedlbauer K et al (2004) Moisture buffering effects of interior linings made from wood or wood based products. Investigations commissioned by Wood Focus Oy and the German Federal Ministry of Economics and Labour

    Google Scholar 

  • Künzel HM (2010) Factors determining surface moisture on external walls. Thermal performance of the exterior envelopes of whole buildings XI international conference, Clearwater Beach, FL

    Google Scholar 

  • Laverge J, Van Den Bossche N, Heijmans N, Janssens A (2011) Energy saving potential and repercussions on indoor air quality of demand controlled residential ventilation strategies. Build Environ 46:1497–1503. doi:10.1016/j.buildenv.2011.01.023

    Article  Google Scholar 

  • Lengsfeld K, Krus M (2004) Microorganism on façades-reasons, consequences and measures. Report, Fraunhofer Institute for Building Physics, Holzkirchen, Germany

    Google Scholar 

  • Linkous CA, Carter GJ, Locuson DB et al (2000) Photocatalytic inhibition of algae growth using TiO 2, WO 3, and cocatalyst modifications. Environ Sci Technol 34:4754–4758. doi:10.1021/es001080+

    Article  Google Scholar 

  • Maury-Ramirez A, De Muynck W, Stevens R et al (2013) Titanium dioxide based strategies to prevent algal fouling on cementitious materials. Cement Concr Compos 36:93–100. doi:10.1016/j.cemconcomp.2012.08.030

    Article  Google Scholar 

  • Osanyintola OF, Talukdar P, Simonson CJ (2006) Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood. Energy Build 38:1283–1292. doi:10.1016/j.enbuild.2006.03.024

    Article  Google Scholar 

  • Padfield T (1999) Humidity buffering of interior spaces by porous, absorbent insulation. Report, Department of Structural Engineering and Materials, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

  • Pagliaro M, Ciriminna R, Palmisano G (2009) Silica-based hybrid coatings. J Mater Chem 19:3116. doi:10.1039/b819615j

    Article  Google Scholar 

  • Sedlbauer K, Krus M, Fitz C, Künzel H (2011) Reducing the risk of microbial growth on insulated walls by PCM enhanced renders and IR reflecting paints. XII DBMC international conference on durability of building materials and components, Porto, Portugal

    Google Scholar 

  • Shirakawa MA, Gaylarde CC, Gaylarde PM et al (2002) Fungal colonization and succession on newly painted buildings and the effect of biocide. FEMS Microbiol Ecol 39:165–173. doi:10.1111/j.1574-6941.2002.tb00918.x

    Article  Google Scholar 

  • Shirakawa MA, Tavares RG, Gaylarde CC et al (2010) Climate as the most important factor determining anti-fungal biocide performance in paint films. Sci Total Environ 408:5878–5886. doi:10.1016/j.scitotenv.2010.07.084

    Article  Google Scholar 

  • Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ Int 37:1131–1142. doi:10.1016/j.envint.2011.02.013

    Article  Google Scholar 

  • Steeman M, Van Belleghem M, De Paepe M, Janssens A (2010a) Experimental validation and sensitivity analysis of a coupled BES–HAM model. Build Environ 45:2202–2217. doi:10.1016/j.buildenv.2010.04.003

    Article  Google Scholar 

  • Steeman M, Janssens A, Belleghem MV, De Paepe M (2010b) Validation of a coupled BES-HAM model with experimental data. In: Proceedings of the 1st Central European symposium on building physics, Cracow, Poland

    Google Scholar 

  • Svennberg K, Hedegaard L, Rode C (2004) Moisture buffer performance of a fully furnished room. In: Proceedings (CD) of the performance of exterior envelopes of whole buildings IX international conference, Clearwater Beach, FL

    Google Scholar 

  • Synnefa A, Santamouris M, Akbari H (2007) Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy Build 39:1167–1174. doi:10.1016/j.enbuild.2007.01.004

    Article  Google Scholar 

  • Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. 9th ARIADNE workshop “Historic Material and their Diagnostic”, ARCCHIP, Prague, Czech Republic

    Google Scholar 

  • Uemoto KL, Sato NMN, John VM (2010) Estimating thermal performance of cool colored paints. Energy Build 42:17–22. doi:10.1016/j.enbuild.2009.07.026

    Article  Google Scholar 

  • Urzì C, De Leo F (2007) Evaluation of the efficiency of water-repellent and biocide compounds against microbial colonization of mortars. Int Biodeterior Biodegradation 60:25–34. doi:10.1016/j.ibiod.2006.11.003

    Article  Google Scholar 

  • Urzì C, Leo F De, Galletta M et al (2000) Efficiency of biocide in “in situ” and “in vitro” treatment. Study case of the “Templete de Mudejar”, Guadalupe, Spain. In: Proceedings of the ninth international congress on deterioration and conservation of stone, Venice, Italy, pp 531–539

    Google Scholar 

  • Wangler TP, Zuleeg S, Vonbank R et al (2012) Laboratory scale studies of biocide leaching from façade coatings. Build Environ 54:168–173. doi:10.1016/j.buildenv.2012.02.021

    Article  Google Scholar 

  • Warkentin M, Schumann R, Messal C (2007) Faster evaluation. Eur Coat J 09:26

    Google Scholar 

  • Zhang Z, MacMullen J, Dhakal HN et al (2013) Biofouling resistance of titanium dioxide and zinc oxide nanoparticulate silane/siloxane exterior facade treatments. Build Environ 59:47–55. doi:10.1016/j.buildenv.2012.08.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Di Giuseppe .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Di Giuseppe, E. (2013). Remedial Actions and Future Trends. In: Nearly Zero Energy Buildings and Proliferation of Microorganisms. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-02356-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02356-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02355-7

  • Online ISBN: 978-3-319-02356-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics