Advertisement

Spectroscopic Properties of Nd3+, Yb3+, Er3+, and Tm3+ Doped Fibers

  • Valerii (Vartan) Ter-MikirtychevEmail author
Chapter
  • 2.8k Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 181)

Abstract

Rare earth (RE)3+ ion transitions show up in the optical spectrum as sharp lines that vary little in energy position from host to host (either in glass or crystals). The corresponding energy level positions are designated by the following spectroscopic notations.

Keywords

Fiber Laser Phosphate Glass Spectroscopic Parameter Tellurite Glass Glass Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, 1st edn. (Wiley, New York, 1968)Google Scholar
  2. 2.
    J. Dong, M. Bass, C. Walters, Temperature-dependent stimulated-emission cross section and concentration quenching in Nd3+-doped phosphate glasses. J. Opt. Soc. Am. B 21, 454–457 (2004)CrossRefGoogle Scholar
  3. 3.
    S.E. Stokowski, R.A. Saroyan, M.J. Weber, Nd-Doped Laser Glass Spectroscopic and Physical Properties (Technical Report) (Lawrence Livermore National Lab., Livermore, CA, USA, 2004) Nov 15, Report number: UCRL-TR-208148Google Scholar
  4. 4.
    R.R. Jacobs, M.M. Weber, IEEE J. Quantum Electron. QE-12, 102 (1976)Google Scholar
  5. 5.
    N.B. Brachkovskaia, A.A. Grubin, S.G. Lunter, Sov. J. Quantum Electron. 3, 998 (1976)Google Scholar
  6. 6.
    A. Tünnermann, J. Limpert, A. Bruns, Diode-pumped fiber lasers, Chap. 4.3, Landolt-Börnstein—Group VIII Advanced Materials and Technologies, 12, 125–139, in Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, ed. by W. Schulz (New Series, Part 12 Subseries), Advanced Materials and Technologies, vol. XV (Springer, 2008), p. 282Google Scholar
  7. 7.
    H.M. Pask et al., Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region. IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995)Google Scholar
  8. 8.
    R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, Ytterbium-doped fibre amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997)CrossRefGoogle Scholar
  9. 9.
    ChC Robinson, J.T. Fournier, Co-ordination of Yb3+ in phosphate, silicate and germinate glasses. J. Phys. Chem. Solids 31, 895–904 (1970)CrossRefGoogle Scholar
  10. 10.
    L.B. Glebov, Linear and nonlinear photoionization of silicate glasses. Glass Sci. Technol. 75(C2) (2002)Google Scholar
  11. 11.
    J. Koponen, M. Söderlund, H. Hoffman, D. Kliner, J. Koplow, Photodarkening measurements in LMA fibers. Proc. SPIE 6453, 64531E.1–64531E.11 (2007)Google Scholar
  12. 12.
    P. Babu, H.J. Seo, K.H. Jang, R. Balakrishnaiah, C.K. Jayasankar, K.-S. Lim, V. Lavín, Optical spectroscopy, 1.5 μm emission, and upconversion properties of Er3+-doped metaphosphate laser glasses. J. Opt. Soc. Am. B 24, 2218–2228 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Jiang, T. Luo, B.C. Hwang, F. Smekatala, K. Seneschal, J. Lucas, N. Peyghabarian, Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length. J. Non-Cryst. Solids 263–264, 364–368 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Dubinskii, V. Ter-Mikirtychev, J. Zhang, I. Kudryashov, Yb-free, SLM EDFA: comparison of 980, 1470 and 1530 nm excitation for the core- and clad-pumping. Proc. SPIE 6952 (2008)Google Scholar
  15. 15.
    E. Snitzer, Glass lasers. Appl. Opt. 5, 1487–1499 (1966)CrossRefGoogle Scholar
  16. 16.
    R. Balda, J. Fernández, S. García-Revilla, J.M. Fernández Navarro, Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass. Opt. Express 15, 6750–6761 (2007)CrossRefGoogle Scholar
  17. 17.
    G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, M. Tonelli, Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: a comparative study. J. Appl. Phys. 103, 093104.1–093104.7 (2008)Google Scholar
  18. 18.
    G. Frith, B. Samson, A. Carter, D. Machewirth, J. Farroni, K. Tankala, Power Scaling 790 nm-Pumped Tm 3+-Doped Devices from 1.91 to 2.13 μm Photonics West, San Jose, 19–24 Jan 2008Google Scholar
  19. 19.
    R.G. Smart, J.N. Carter, A.C. Tropper, D.C. Hanna, CW oscillation of Tm3+-doped fluorozirconate fiber lasers at around 1,470, 1,900 and 2,300 nm when pumped at 790 nm. Opt. Commun. 82(5, 6), 563–570 (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mountain ViewUSA

Personalised recommendations