Industrial Applications of Fiber Lasers

  • Valerii (Vartan) Ter-MikirtychevEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 181)


As is evident from the material presented in earlier chapters, fiber lasers in general and high-power fiber lasers in particular are at a crossroads of two important directions in the field of lasers: laser diode pumping technology (including high-power diode laser development) and laser-active optical fiber technology.


Fiber Laser Hollow Fiber Laser Welding Beam Quality Photonic Crystal Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.M. Steen, K. Watkins, Laser Material Processing, 3rd edn. (Springer Verlag London Limited, UK, 2003), p. 401Google Scholar
  2. 2.
    R. Iffländer, Solid-State Lasers for Materials Processing (Springer Verlag Berlin, 2001), p. 347Google Scholar
  3. 3.
    J.F. Ready, Industrial Applications of Lasers (Academic Press, New York City, 1997)Google Scholar
  4. 4.
    J.P. Holman, Heat Transfer, 9th edn. (McGraw-Hill, New York, 2002) (which in turn cites A.I. Brown, S.M. Marco, Introduction to Heat Transfer, 3rd edn., McGraw-Hill, New York, 1958 and E.R.G. Eckert, R.M. Drake, Heat and Mass Transfer, McGraw-Hill, New York, 1959)Google Scholar
  5. 5.
    A. Bejan, J. H. Boyett, A.D. Kraus, Heat Transfer Handbook (Wiley-IEEE, NJ, 2003), p. 1496Google Scholar
  6. 6.
    T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen, Fiber-optic-bundle-based optical coherence tomography. Opt. Lett. 30, 1803–1805 (2005)CrossRefGoogle Scholar
  7. 7.
    T.J. Stephens, M.J. Haste, D.P. Towers, M.J. Thomson, M.R. Taghizadeh, J.D.C. Jones, D.P. Hand, Fiber-optic delivery of high-peak-power q-switched laser pulses for in-cylinder flow measurement. Appl. Opt. 42, 4307–4314 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Tünnermann, J. Limpert, A. Bruns, in Diode-Pumped Fiber Lasers. Chapter 4.3 in Laser Systems, Part 2, Landolt-Börnstein—Group VIII Advanced Materials and Technologies, vol. 12 (Springer, 2008), pp. 125–139Google Scholar
  9. 9.
    N.A. Mortensen, J.R. Folkenberg, M.D. Nielsen, K.P. Hansen, Modal cutoff and the V parameter in photonic crystal fibers. Opt. Lett. 28, 1879–1881 (2003)CrossRefGoogle Scholar
  10. 10.
    T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)CrossRefGoogle Scholar
  11. 11.
    J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express 12, 1313–1319 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing. Appl. Opt. 31, 5114–5120 (1992)CrossRefGoogle Scholar
  13. 13.
    J.A. Harrington, A review of IR transmitting, hollow waveguides. Fiber Integr. Opt. 19, 211–217 (2000)CrossRefGoogle Scholar
  14. 14.
    W.F. Krupke, Advanced Diode-Pumped Solid-State Lasers (DPSS): Near Term Trends and Future Prospects, in Proceedings of SPIE, 2000, vol. 3889, pp. 21–32Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mountain ViewUSA

Personalised recommendations