High-Power Fiber Lasers

  • Valerii (Vartan) Ter-MikirtychevEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 181)


High-power fiber lasers occupy probably the most challenging and demanding place in the whole field of fiber laser technology; they also are state of the art. Both continuous-wave (CW) and pulsed high-power fiber laser systems constantly require technological advances. This chapter describes the main challenges in the development of high-power fiber lasers—the solution of which creates a path to successful laser development.


Pump Power Fiber Laser Stimulate Raman Scattering Nonlinear Refractive Index Stimulate Brillouin Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.A. Parthasarathy, R.S. Hay, G.E. Fair, F.K. Hopkins, Predicted performance limits of yttrium aluminum garnet fiber lasers. Opt. Eng. 49(9), 094302 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Wetter, M. Faucher, M. Lovelady, F. Seguin, Tapered fused-bundle splitter capable of 1 kW CW operation. Proc. SPIE 6453, 64530I.1–64530I.10 (2007)Google Scholar
  3. 3.
    J.P. Koplow, S.W. Moore, D.A.V. Kliner, A new method for side pumping of double-clad fiber sources. IEEE J. Quantum Electron. 39(4), 529–540 (2003)CrossRefGoogle Scholar
  4. 4.
    D.J. Ropin, L. Goldberg, High efficiency side-coupling of light into optical fibres using imbedded v-grooves. Electron. Lett. 31(25), 2204–2205 (1995)CrossRefGoogle Scholar
  5. 5.
    H. Weber, W. Luthy, H.P. Weber, V. Neuman, H. Berthou, G. Kotrotsios, A longitudinal and side-pumped single transverse mode double-clad fiber laser with a special silicone coating. Opt. Commun. 115, 99–104 (1995)CrossRefGoogle Scholar
  6. 6.
    J.M. Fini, Bend distortion in large-mode-area amplifier fiber design, Proc. SPIE 6781 (2007)Google Scholar
  7. 7.
    B.Ya. Zel’dovich, N.F. Pilipetsky, V.V. Shkunov, Principles of Phase Conjugation (Springer Series in Optical Sciences, Berlin, 1985), p. 250 (Hardcover)Google Scholar
  8. 8.
    G.W. Faris et al., High–resolution stimulated Brillouin gain spectroscopy in glasses and crystals. JOSA B 10(4), 587–599 (1993)CrossRefMathSciNetGoogle Scholar
  9. 9.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, New York, 2001), p. 466Google Scholar
  10. 10.
    R.R. Alfano et al., Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials. J. Opt. Soc. Am. B. 6(4), 824–829 (1989)CrossRefGoogle Scholar
  11. 11.
    G.A. Askarian, Effect of the gradient of a strong electromagnetic ray on electrons and atoms. Zh. Eksp. Teor. Fiz. 42, 1361–1570 (1962)Google Scholar
  12. 12.
    G.M. Zverev, V.A. Pashkov, Self-focusing of laser radiation in solid dielectrics. Sov. Phys. JETP 30(4), 616–621 (1970)Google Scholar
  13. 13.
    R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)CrossRefGoogle Scholar
  14. 14.
    S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 93, 609–636 (1968)CrossRefGoogle Scholar
  15. 15.
    V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966)Google Scholar
  16. 16.
    A.A. Mak, L.N. Soms, V.A. Fromzel, V.E. Yashiin, Lasers Based on Neodymium Glass (Nauka, Moscow, 1990), pp. 1–288Google Scholar
  17. 17.
    S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Phys. Uspekhi 10, 609–636 (1968)CrossRefGoogle Scholar
  18. 18.
    M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, H. Mueller, 10 W widely tunable narrow linewidth double-clad fiber ring laser. Opt. Express 10, 139–144 (2002)CrossRefGoogle Scholar
  19. 19.
    D.Y. Shen, J.K. Sahu, W.A. Clarkson, Highly efficient Er, Yb-doped fiber laser with 188 W free-running and >100 W tunable output power. Opt. Express 13, 4916–4921 (2005)CrossRefGoogle Scholar
  20. 20.
    Y. Jeong, J. Sahu, D. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 12, 6088–6092 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, 100-W single-frequency master-oscillator fiber power amplifier. Opt. Lett. 28, 1537–1539 (2003)CrossRefGoogle Scholar
  22. 22.
    P. Dupriez, A. Piper, A. Malinowski, J.K. Sahu, M. Ibsen, Y. Jeong, L.M.B. Hickey, M.N. Zervas, J. Nilsson, D.J. Richardson, 321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper PDP3Google Scholar
  23. 23.
    V. Khitrov, B. Samson, D. Machewirth, K. Tankala, 50 W single-mode linearly polarized high peak power pulsed fiber laser with tunable ns-μs pulse durations and kHz-MHz repetition. Proc. SPIE 6873, 68730C1–68730C6 (2008)Google Scholar
  24. 24.
    F. Roser, D. Schimpf, O. Schmidt, B. Ortac, K. Rademaker, J. Limpert, A. Tunnermann, 90 W average power high energy femtosecond fiber laser system. Proc. SPIE 6453, 645310.1–645310.4 (2007)Google Scholar
  25. 25.
    M. Dubinskii, V. Ter-Mikirtychev, J. Zhang, I. Kudryashov, Yb-free, SLM EDFA: comparison of 980-, 1470- and 1530-nm excitation for the core-and clad-pumping. Proc. SPIE 6952, 695205 (2008)Google Scholar
  26. 26.
    C. Zeringue, I. Dajani, C. Vergien, C. Robin, Pump limited 203 W monolithic single frequency fiber amplifier: a two-tone approach. Proc. SPIE 7914, paper 7914-115 (2011)Google Scholar
  27. 27.
    G.D. Goodno, L.D. Book, J.E. Rothenberg, 600-W, single-mode, single-frequency thulium fiber laser amplifier. Proc. SPIE 7195, paper 71950Y-1-10 (2009)Google Scholar
  28. 28.
    T.Y. Fan, Laser beam combining for high-power, high radiance sources. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005)CrossRefGoogle Scholar
  29. 29.
    I. Ciapurin, L. Glebov, E. Rotari, V. Smirnov, Spectral beam combining by PTR Bragg gratings, in Proceedings of Solid State and Diode Lasers Technical Review (SSDLTR) (2003), pp. HPFib—4Google Scholar
  30. 30.
    L.B. Glebov, V.I. Smirnov, M.C. Stickley, I.V. Ciapurin, Laser weapons technology III. Proc. SPIE 4724, 101–109 (2002)CrossRefGoogle Scholar
  31. 31.
    I.V. Ciapurin, L.B. Glebov, C.M. Stickley, in Proceedings of Solid State and Diode Lasers Technical Review. Albuquerque, Paper HPFIB4 (2002)Google Scholar
  32. 32.
    O. Andrusyak, D. Drachenberg, V. Smirnov, G. Venus, L. Glebov, Fiber laser system with kW-level spectrally-combined output, in 21st Annual Solid State and Diode Laser Technology Review, SSDLTR-2008 Technical Digest, Albuquerque, NM (June 2008), pp. 2–6Google Scholar
  33. 33.
    O. Andrusyak, I. Ciapurin, V. Smirnov, G.Venus, N. Vorobiev, L. Glebov, External and common-cavity high spectral density beam combining of high power fiber lasers, fiber lasers V: technology, systems, and applications, ed. by J. Broeng, C. Headley, Proceedings of SPIE, vol. 6873 (2008), p. 685314Google Scholar
  34. 34.
    A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, L. Glebov, Efficient power scaling of laser radiation by spectral beam combining. Opt. Lett. 33, 384–386 (2008)CrossRefGoogle Scholar
  35. 35.
    A. Sevian, O. Andrusyak, I. Ciapurin, G. Venus, V. Smirnov, L. Glebov, Efficient power scaling of laser radiation by spectral beam combining: erratum. Opt. Lett. 33, 760 (2008)CrossRefGoogle Scholar
  36. 36.
    I.V. Ciapurin, L.B. Glebov, V.I. Smirnov, Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass. Proc. SPIE 5742, 183–194 (2005), See also Introduction to Volume Holographic Gratings (VHG), Ondax, white paper ( Scholar
  37. 37.
    G. Venus, A. Sevian, V. Smirnov, L. Glebov, Stable coherent coupling of laser diodes by a volume Bragg grating in photothermorefractive glass. Opt. Lett. 31, 1453–1455 (2006)CrossRefGoogle Scholar
  38. 38.
    G. Venus, A. Sevian, L. Glebov, in Stable Coherent Coupling of Laser Diodes by a Volume Bragg Rating in PTR Glass. High-Power Diode Laser Technology and Applications IV, ed. by M. Zediker, Proceedings of SPIE, vol. 6104 (2006), p. 61040SGoogle Scholar
  39. 39.
    V.A. Kozlov, J. Hernández-Cordero, T.F. Morse, All-fiber coherent beam combining of fiber lasers. Opt. Lett. 24, 1814–1816 (1999)CrossRefGoogle Scholar
  40. 40.
    A. Shirakawa, K. Matsuo, K. Ueda, Fiber laser coherent array for power scaling, bandwidth narrowing and beam direction control, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper MC3, pp. 553–558Google Scholar
  41. 41.
    S.J. Augst, J.K. Ranka, T.Y. Fan, A. Sanchez, Beam combining of ytterbium fiber amplifiers. J. Opt. Soc. Am. B 24, 1707–1715 (2007)CrossRefGoogle Scholar
  42. 42.
    T. Shay, J. Baker, A. Sanchez, C. Robin, C. Vergien, C. Zeringue, D. Gallant, C. Lu, B. Pulford, T. Bronder, A. Lucero, in High-Power Phase Locking of a Fiber Amplifier Array, Fiber Lasers VI: Technology, Systems, and Applications, ed. by D.V. Gapontsev, D.A. Kliner, J.W. Dawson, K. Tankala, Proceedings of SPIE, vol. 7195, 71951MGoogle Scholar
  43. 43.
    M. Fridman, V. Eckhouse, N. Davidson, A.A. Friesem, Simultaneous coherent and spectral addition of fiber lasers. Opt. Lett. 33, 648–650 (2008)CrossRefGoogle Scholar
  44. 44.
    K. Ludewigt, M. Gowin, E.T Have1, M. Jung, C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, High brightness spectral beam combining to 8.2 kW. Proc. SPIE 7914, Paper 7914-115 (2011)Google Scholar
  45. 45.
    D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, L. Glebov, High power spectral beam combining of fiber lasers with ultra high spectral density by thermal tuning of volume bragg gratings. Proc. SPIE 7914, 79141F1–79141F10 (2011)Google Scholar
  46. 46.
    D. Kliner et al., Fiber technology reels in high power results. SPIE oemagazine, Jan 2004, pp. 32–35Google Scholar
  47. 47.
    G.I. Stegeman, R.H. Stolen, Waveguides and fibers for nonlinear optics. J. Opt. Soc. Am. B 6, 652–662 (1989)CrossRefGoogle Scholar
  48. 48.
    N. Shibata, R.G. Waarts, R.P. Braun, Brillouin-gain spectra for single-mode fibers having pure-silica, GeO2-doped, and P2O5-doped cores. Opt. Lett. 12, 269–271 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mountain ViewUSA

Personalised recommendations