Idealized Models for FEA Derived from Generative Modeling Processes Based on Extrusion Primitives

Abstract

Shape idealization transformations are very common when adapting a CAD component to FEA requirements. Here, an idealization approach is proposed that is based on generative shape processes used to decompose an initial B-Rep object, i.e. extrusion processes. The corresponding primitives form the basis of candidate sub domains for idealization and their connections conveyed through the generative processes they belong to, bring robustness to set up the appropriate connections between idealized sub domains. Taking advantage of an existing construction tree as available in a CAD software does not help much because it may be complicated to use it for idealization processes. Using generative processes attached to an object that are no longer reduced to a single construction tree but to a graph containing all non trivial construction trees, is more useful for the engineer to evaluate variants of idealization. From this automated decomposition, each primitive is analyzed to define whether it can idealized or not. Subsequently, geometric interfaces between primitives are taken into account to determine more precisely the idealizable sub domains and their contours when primitives are incrementally merged to come back to the initial object.

Keywords

B-Rep model idealization FEA additive process generative shape process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boussuge, F., Léon, J.C., Hahmann, S., Fine, L.: Extraction of generative processes from b-rep shapes and application to idealization transformations. In: CAD, SPM Conference (to appear, 2013)Google Scholar
  2. 2.
    Buchele, S.F., Crawford, R.H.: Three-dimensional halfspace constructive solid geometry tree construction from implicit boundary representations. CAD 36, 1063–1073 (2004)Google Scholar
  3. 3.
    Chong, C.S., Kumar, A.S., Lee, K.H.: Automatic solid decomposition and reduction for non-manifold geometric model generation. CAD 36(13), 1357–1369 (2004)Google Scholar
  4. 4.
    Gao, S., Zhao, W., Lin, H., Yang, F., Chen, X.: Feature suppression based cad mesh model simplification. CAD 42(12), 1178–1188 (2010)Google Scholar
  5. 5.
    Han, J., Pratt, M., Regli, W.C.: Manufacturing feature recognition from solid models: A status report. IEEE Transactions on Robotics and Automation 16, 782–796 (2000)CrossRefGoogle Scholar
  6. 6.
    Joshi, S., Chang, T.C.: Graph-based heuristics for recognition of machined features from a 3d solid model. CAD 20(2), 58–66 (1988)MATHGoogle Scholar
  7. 7.
    Kim, S., Lee, K., Hong, T., Kim, M., Jung, M., Song, Y.: An integrated approach to realize multi-resolution of b-rep model. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, SPM 2005, pp. 153–162 (2005)Google Scholar
  8. 8.
    Lee, K.Y., Armstrong, C.G., Price, M.A., Lamont, J.H.: A small feature suppression/unsuppression system for preparing b-rep models for analysis. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, SPM 2005, pp. 113–124 (2005)Google Scholar
  9. 9.
    Leyton, M.: A Generative Theory of Shape. LNCS, vol. 2145. Springer, Heidelberg (2001)MATHGoogle Scholar
  10. 10.
    Li, M., Langbein, F.C., Martin, R.R.: Constructing regularity feature trees for solid models. In: Kim, M.-S., Shimada, K. (eds.) GMP 2006. LNCS, vol. 4077, pp. 267–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Lim, T., Medellin, H., Torres-Sanchez, C., Corney, J.R., Ritchie, J.M., Davies, J.B.C.: Edge-based identification of dp-features on free-form solids. IEEE Trans. PAMI 27(6) (2005)Google Scholar
  12. 12.
    Liu, S.S., Gadh, R.: Automatic hexahedral mesh generation by recursive convex and swept volume decomposition. In: 6th International Meshing Roundtable, Sandia National Laboratories, pp. 217–231 (1997)Google Scholar
  13. 13.
    Lu, Y., Gadh, R., Tautges, T.J.: Feature based hex meshing methodology: feature recognition and volume decomposition. CAD 33(3), 221–232 (2001)Google Scholar
  14. 14.
    Makem, J.E., Armstrong, C.G., Robinson, T.T.: Automatic decomposition and efficient semi-structured meshing of complex solids. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, vol. 90, pp. 199–215. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Mäntylä, M.: An introduction to solid modeling. Computer Science Press, College Park (1988)Google Scholar
  16. 16.
    Rezayat, M.: Midsurface abstraction from 3d solid models: general theory and applications. CAD 28(1), 905–915 (1996)Google Scholar
  17. 17.
    Robinson, T.T., Armstrong, C., Fairey, R.: Automated mixed dimensional modelling from 2d and 3d cad models. Finite Elem. Anal. Des. 47(2), 151–165 (2011)CrossRefGoogle Scholar
  18. 18.
    Robinson, T.T., Armstrong, C.G., McSparron, G., Quenardel, A., Ou, H., McKeag, R.M.: Automated mixed dimensional modelling for the finite element analysis of swept and revolved cad features. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, SPM 2006, pp. 117–128 (2006)Google Scholar
  19. 19.
    Seo, J., Song, Y., Kim, S., Lee, K., Choi, Y., Chae, S.: Wrap-around operation for multi-resolution cad model. CAD and Applications 2(1-4), 67–76 (2005)Google Scholar
  20. 20.
    Shapiro, V., Vossler, D.L.: Separation for boundary to csg conversion. ACM Trans. Graph. 12(1), 35–55 (1993)CrossRefMATHGoogle Scholar
  21. 21.
    Sheen, D.P., Son, T.G., Myung, D.K., Ryu, C., Lee, S.H., Lee, K., Yeo, T.J.: Transformation of a thin-walled solid model into a surface model via solid deflation. CAD 42(8), 720–730 (2010)Google Scholar
  22. 22.
    Venkataraman, S., Sohoni, M., Rajadhyaksha, R.: Removal of blends from boundary representation models. In: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, SMA 2002, pp. 83–94 (2002)Google Scholar
  23. 23.
    Zhu, H., Menq, C.H.: B-rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition. CAD 34(2), 109–123 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • F. Boussuge
    • 1
    • 2
  • J. -C. Léon
    • 2
  • S. Hahmann
    • 2
  • L. Fine
    • 1
  1. 1.EADS IW, SuresnesParisFrance
  2. 2.LJK-INRIAGrenoble UniversityMontbonnotFrance

Personalised recommendations