Robust One-to-One Sweeping with Harmonic S-T Mappings and Cages

Abstract

A sweeping algorithm can generate hexahedral meshes by sweeping an all-quad mesh on the source surface to the target surface. For one-to-one sweeping, the most difficult thing is to generate an all-quad mesh on the target surface which has the same mesh connectivity as that of the source surface. The traditional method is to use the affine transformation, like translation, rotation, scaling or combinations of them. This method works very well on the convex cases, while it fails for concave and multiply-connected surfaces. In this paper, harmonic function is used to map meshes from a source surface to its target surface. The result shows that it can generate an all-quad mesh on the target surface with good quality without any inverted elements and thus avoid expensive smoothing algorithm (untangling). In order to generate interior nodes between the source and target surface, cage-based deformation method is applied with good mesh quality as well.

Keywords

Harmonic Sweeping Hexahdral Mesh Generation One-to-One 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biswas, R., Strawn, R.C.: Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics 26(1-2), 135–151 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Samareh, J.A.: Geometry and grid/mesh generation issues for CFD and CSM shape optimization. Optimization and Engineering 6(1), 21–32 (2005)CrossRefMATHGoogle Scholar
  3. 3.
    Owen, S.J.: A Survey of Unstructured Mesh Generation Technology. In: 7th IMR, pp. 239–267 (1998)Google Scholar
  4. 4.
    Taniguchi, T., Goda, T., Kasper, H., et al.: Hexahedral Mesh Generation of Complex Composite Domain. In: 5th International Conference on Grid Generation in Computational Field Simmulations, pp. 699–707 (1996)Google Scholar
  5. 5.
    Schneiders, R.: A Grid-based Algorithm for the Generation of Hexahedral Element Meshes. Engineering with Computers 12(3-4), 168–177 (1996)CrossRefGoogle Scholar
  6. 6.
    Price, M.A., Armstrong, C.G.: Hexahedral Mesh Generation by Medial Surface Subdivision: Part I. IJNME 38(19), 3335–3359 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    Price, M.A., Armstrong, C.G.: Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. IJNME 40, 111–136 (1997)CrossRefGoogle Scholar
  8. 8.
    Blacker, T.D., Myers, R.J.: Seams and Wedgers in Plastering: A 3D Hexahedral Mesh Generation Algorithm. Engineering With Computers 2, 83–93 (1993)CrossRefGoogle Scholar
  9. 9.
    Tautges, T.J., Blacker, T.D., Mitchell, S.A.: The Whisker-Weaving Algorithm: A Connectivity Based Method for Constructing All-Hexahedral Finite Element Meshes. IJNME 39, 3327–3349 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Patric, M.K.: Next-Generation Sweep Tool: A Method for Generating All-Hex Meshes on Two-And-One-Half Dimensional Geometries. In: 7th IMR, pp. 505–513 (1998)Google Scholar
  11. 11.
    Staten, M.L., Canann, S.A., Owen, S.J.: BMSweep: Locating Interior Nodes During Sweeping. In: 7th IMR, pp. 7–18 (1998)Google Scholar
  12. 12.
    Roca, X., Sarrate, J., Huerta, A.: Surface Mesh Projection for Hexahedral Mesh Generation by Sweeping. In: 13th IMR, pp. 169–180 (2004)Google Scholar
  13. 13.
    Roca, X., Sarrate, J., Huerta, A.: A new least-squares approximation of affine mappings for sweep algorithms. In: 14th IMR, pp. 433–448 (2005)Google Scholar
  14. 14.
    White, D.R., Lai, M.W., et al.: Automated Hexahedral Mesh Generation by Virtual Decomposition. In: 4th IMR, pp. 165–176 (1995)Google Scholar
  15. 15.
    Scott, M.A., Earp, M.N., Benzley, S.E., et al.: Adaptive Sweeping Techniques. In: 14th IMR, pp. 417–432 (2005)Google Scholar
  16. 16.
    Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A comparison of mesh morphing methods for 3D shape optimization. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, vol. 90, pp. 293–311. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Shontz, S.M., Vavasis, S.A.: A mesh warping algorithm based on weighted Laplacian smoothing. In: 12th IMR, pp. 147–158 (2003)Google Scholar
  18. 18.
    Vurputoor, R.M., et al.: A Mesh Morphing Technique for Geometrically Dissimilar Tessellated Surfaces. In: 16th IMR, pp. 315–334 (2008)Google Scholar
  19. 19.
    Sigal, I.A., Hardisty, M.R., Whyne, C.M.: Mesh-morphing algorithms for specimen-specific finite element modeling. Journal of Biomechanics 41(7), 1381–1389 (2008)CrossRefGoogle Scholar
  20. 20.
    Lee, A., Dobkin, D., Sweldens, W., Schroder, P.: Multiresolution Mesh Morphing. In: Proceedings of SIGGRAPH 1999, pp. 343–350 (1999)Google Scholar
  21. 21.
    Kanai, T., Suzuki, H., Kimura, F.: Three-dimensional geometric metamorphosis based on Harmonic Maps. The Visual Computer 14(4), 166–176 (1998)CrossRefGoogle Scholar
  22. 22.
    Lee, A.W.F., Sweldens, W., Schroder, P., et al.: MAPS: Multiresolution Adaptive Parameterization of Surfaces. In: SIGGRAPH 1998 Proceedings, pp. 95–104 (1998)Google Scholar
  23. 23.
    Fan, Z.W., Jin, X.G., Feng, J.Q.: Mesh Morphing using polycube-based cross-parameterization. Computer Animation and Virtual Worlds 16, 499–508 (2005)CrossRefGoogle Scholar
  24. 24.
    Kanai, T., Fujita, M., Chiyokura, H.: Multiresolution interpolation meshes. In: 9th Pacific Graphics International Conference, vol. 10, pp. 60–69 (2001)Google Scholar
  25. 25.
    Marc, A.: Recent Advances in Mesh Morphing. CG Forum, 1–23 (2002)Google Scholar
  26. 26.
    Wang, Y., Gupa, M., Gu, X.F., et al.: High Resolution Tracking of non-Rigid 3D Motion of Densely Sampled Data Using Harmonic Maps. In: IEEE International Conference on Computer Vision (2005)Google Scholar
  27. 27.
    Joshi, P., Meyer, M., et al.: Harmonic Coordinates for Character Articulation. ACM Transactions on Graphics 26(3(7)) (2007)Google Scholar
  28. 28.
    Zhang, D., Hebert, M.: Harmonic maps and their applications in surface matching. In: IEEE Conference on Computer Vision and Pattern Recognition (1999)Google Scholar
  29. 29.
    Remacle, J.F., Geuzaine, C., Compere, G., et al.: High Quality Surface Remeshing Using Harmonic Maps. IJNME 83(4), 403–425 (2009)MathSciNetGoogle Scholar
  30. 30.
    Zeng, W., Yin, X.T., Zhang, M., Luo, F., Gu, X.F.: Generalized Koebe’s method for conformal mapping multiply connected domains. In: SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 89–100. ACM (2009)Google Scholar
  31. 31.
    Joshi, P., Meyer, M., DeRose, T., et al.: Harmonic coordinates for character articulation. ACM Transactions on Graphics (TOG) 26(3) (2007)Google Scholar
  32. 32.
  33. 33.
  34. 34.
  35. 35.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonU.S.A.
  2. 2.Argonne National LaboratoryMCSMadisonU.S.A.

Personalised recommendations