Modern Methods of Monitoring Radiological Contamination of Water Reservoirs

  • O. Korostynska
  • A. Mason
  • S. Ikezawa
  • A. I. Al-Shamma’a
Chapter

Abstract

Radiation contamination of water can occur due to natural or man-made sources and events. Although periodical monitoring of water quality takes place in most regulated water reservoirs, the tragic events like Chernobyl and Fukushima and the potential threat of intentional contamination of water justify the need for the development of novel real-time monitoring methods that would alert the authorities or public if the permissible level of radiation in water reservoir is exceeded. This book chapter focuses on the most common sources of radiological contamination of water; it reviews the current regulatory approach to the measurement of such contamination and critically discusses the advantages and limitations of traditional laboratory based methods of water samples analysis as compared to novel emerging technologies that could be potentially implemented into online monitoring system for continuous verification of water quality and safety.

Keywords

Radiation contamination Water quality monitoring Real-time analysis Gamma ray scintillation counters Plasma-mass spectrometry Environmental monitoring platform 

References

  1. 1.
    European Council, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, OJ L, vol. 327, pp. 1–73, Dec. 2000Google Scholar
  2. 2.
    S. Caroli, M. Forte, C. Nuccetelli, R. Rusconi, S. Risica, A short review on radioactivity in drinking water as assessed by radiometric and inductively coupled plasma-mass spectrometry techniques. Microchem. J. 107, 95–100 (2013)CrossRefGoogle Scholar
  3. 3.
    K. Arshak, O. Korostynska, Advanced Materials and Techniques for Radiation Dosimetry (Artech House, London, 2006)Google Scholar
  4. 4.
    D. Calmet, R. Ameon, A. Bombard, M. Forte, M. Fournier, M. Herranz, S. Jerome, P. Kwakman, M. Llaurado, S. Tokonami, ISO standards on test methods for water radioactivity monitoring. Appl. Radiat. Isot.Google Scholar
  5. 5.
    ISO. ISO Standards catalogue. 13.280: Radiation protection. Available: http://www.iso.org/iso/products/standards/catalogue_ics_browse.htm?ICS1=13&ICS2=280&
  6. 6.
    European Commission, Laying Down Requirements for the Protection of the Health of the General Public With Regard to Radioactive Substances in Water Intended for Human Consumptional, in COM147 vol. 201200074NLE, ed. Brussels, Belgium, 2012Google Scholar
  7. 7.
    D. Desideri, M.A. Meli, L. Feduzi, C. Roselli, A. Rongoni, D. Saetta, 238U, 234U, 226Ra, 210Po concentrations of bottled mineral waters in Italy and their dose contribution. J. Environ. Radioact. 94, 86–97 (2007)CrossRefGoogle Scholar
  8. 8.
    ISO, ISO/TC 147/SC 3 Radioactivity measurements, ed (2005)Google Scholar
  9. 9.
    ISO, 11704:2010 Water quality-measurement of gross alpha and beta activity concentration in non-saline water-liquid scintillation counting method, ed (2010)Google Scholar
  10. 10.
    O. Korostynska, K. Arshak, V. Velusamy, A. Arshak, A. Vaseashta, Recent Advances in Point-of-Access Water Quality Monitoring: Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, edited by A. Vaseashta, E. Braman, P. Susmann (Springer, Netherlands, 2012), pp. 261–268Google Scholar
  11. 11.
    J. Cadet, T. Douki, D. Gasparutto, J.-L. Ravanat, Radiation-induced damage to cellular DNA: measurement and biological role. Radiat. Phys. Chem. 72, 293–299 (2005)CrossRefGoogle Scholar
  12. 12.
    P. Swiderek, Fundamental processes in radiation damage of DNA. Angewandte Chemie - International Edition 45, 4056–4059 (2006)CrossRefGoogle Scholar
  13. 13.
    C. Matthiesen, J.S. Thompson, D. Thompson, B. Farris, B. Wilkes, S. Ahmad, T. Herman, C. Bogardus Jr, The efficacy of radiation therapy in the treatment of graves’ orbitopathy. Int. J. Radiat. Oncol. Biol. Phys. 82, 117–123 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Merrill, J. Horowitz, A.C. Traino, S.R. Chipkin, C.V. Hollot, Y. Chait, Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys. Med. Biol. 56, 557–571 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Lariviere, K.M. Reiber, R.D. Evans, R.J. Cornett, Determination of 210Pb at ultra-trace levels in water by ICP-MS. Anal. Chim. Acta 549, 188–196 (2005)CrossRefGoogle Scholar
  16. 16.
    R. I. Kleinschmidt, Gross alpha and beta activity analysis in water—a routine laboratory method using liquid scintillation analysis, in Low Level Radionuclide Measurement Techniques, October 13, 2003–October 17, 2003, Vienna, Austria, 2004, pp. 333–338Google Scholar
  17. 17.
    D. Desideri, C. Roselli, L. Feduzi, M.A. Meli, Radiological characterization of drinking waters in Central Italy. Microchem. J. 87, 13–19 (2007)CrossRefGoogle Scholar
  18. 18.
    J.M. Pates, N.J. Mullinger, Determination of 222Rn in fresh water: development of a robust method of analysis by/separation liquid scintillation spectrometry. Appl. Radiat. Isot. 65, 92–103 (2007)CrossRefGoogle Scholar
  19. 19.
    B.K. Bhaumik, M. Soundararajan, Statistical evaluation of an optimum radon emanometric technique. Int. J. Radiat. Appl. Instrum. Part D. Nucl. Tracks Radiat. Meas. 17, 503–506 (1990)Google Scholar
  20. 20.
    A. Heckel, K. Vogl, Rapid method for determination of the activity concentrations of 89Sr and 90Sr. Appl. Radiat. Isot. 67, 794–796 (2009)CrossRefGoogle Scholar
  21. 21.
    C.F. Brown, K.N. Geiszler, M.J. Lindberg, Analysis of 129I in groundwater samples: direct and quantitative results below the drinking water standard. Appl. Geochem. 22, 648–655 (2007)CrossRefGoogle Scholar
  22. 22.
    Y.L. Chang, S.J. Jiang, Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass spectrometry. J. Anal. Atom. Spectrom. 16, 858–862 (2001)CrossRefGoogle Scholar
  23. 23.
    K. Jitmanee, N. Teshima, T. Sakai, K. Grudpan, DRC ICP-MS coupled with automated flow injection system with anion exchange minicolumns for determination of selenium compounds in water samples. Talanta 73, 352–357 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Liu, S.-J. Jiang, Determination of vanadium in water samples by reaction cell inductively coupled plasma quadrupole mass spectrometry. J. Anal. Atom. Spectrom. 17, 556–559 (2002)CrossRefGoogle Scholar
  25. 25.
    H.L. Ma, P.A. Tanner, Speciated isotope dilution analysis of Cr(III) and Cr(VI) in water by ICP-DRC-MS. Talanta 77, 189–194 (2008)CrossRefGoogle Scholar
  26. 26.
    V.F. Taylor, R.D. Evans, R.J. Cornett, Determination of 90Sr in contaminated environmental samples by tuneable bandpass dynamic reaction cell ICP-MS. Anal. Bioanal. Chem. 387, 343–350 (2007)CrossRefGoogle Scholar
  27. 27.
    M. Sakama, Y. Nagano, T. Saze, S. Higaki, T. Kitade, N. Izawa, O. Shikino, S. Nakayama, Application of ICP-DRC-MS to screening test of strontium and plutonium in environmental samples at Fukushima, Appl. Radiat. Isot. Appl Radiat Isot. 81, 201–7 (2013) Google Scholar
  28. 28.
    IRE ELiT (2013). National Institute for Radioelements: Environmental Network Monitoring System (ENMS). Available: http://www.ire.eu/documents/fiche_services_2_wat.pdf
  29. 29.
    D.A. Belyj, A.N. Kovalenko, V.G. Bebeshko, Pathological states of some organs and systems in persons survived after acute radiation sickness: 15 years dynamics after the Chernobyl accident. Meditsinskaya Radiologiya I Radiatsionnaya Bezopasnost 49, 24–36 (2004)Google Scholar
  30. 30.
    R.J. Berry, Early radiation casualties—what Chernobyl has taught us. J. Soc. Radiol. Protect. 7, 55–59 (1987)CrossRefGoogle Scholar
  31. 31.
    N.M. Nadezhina, I.A. Galstyan, L.A. Suvorova, V.N. Pokrovskaya, G.P. Gruzdev, V.G. Lelyuk, A.B. Kutuzova, Z.N. Rtishcheva, I.V. Uvacheva, Health status of Chernobyl acute radiation syndrome patients. Radiatsionnaya Biologiya. Radioekologiya 37, 780–786 (1997)Google Scholar
  32. 32.
    N. Parmentier, J.C. Nenot, Radiation damage aspects of the Chernobyl accident. Atmos. Environ. 23, 771–775 (1989)CrossRefGoogle Scholar
  33. 33.
    A.P. Mller, I. Nishiumi, H. Suzuki, K. Ueda, T.A. Mousseau, Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecol. Ind. 24, 75–81 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Bonisoli-Alquati, T.A. Mousseau, A.P. Møller, M. Caprioli, N. Saino, Increased oxidative stress in barn swallows from the Chernobyl region. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 155, 205–210 (2010)CrossRefGoogle Scholar
  35. 35.
    K. Arshak, O. Korostynska, Thin- and thick-film real-time gamma radiation detectors. Sens. J. IEEE 5, 574–580 (2005)CrossRefGoogle Scholar
  36. 36.
    R. Kleinschmidt, J. Black, R. Akber, Mapping radioactivity in groundwater to identify elevated exposure in remote and rural communities. J. Environ. Radioact. 102, 235–243 (2011)CrossRefGoogle Scholar
  37. 37.
    Result of Radioactive Nuclide Analysis around Fukushima Daiichi Nuclear Power Station, http://www.tepco.co.jp/en/nu/fukushima-np/f1/smp/index-e.html
  38. 38.
    Project KURAMA, Buses in Fukushima to Shed Light on Radiation in the Area, RocketNews24 (2011)Google Scholar
  39. 39.
    M. Tanigaki, National Instruments. Post-Fukushima: Using LabVIEW and CompactRIO to Monitor Radiation. NI Case Study (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • O. Korostynska
    • 1
  • A. Mason
    • 1
  • S. Ikezawa
    • 2
  • A. I. Al-Shamma’a
    • 1
  1. 1.Built Environment and Sustainable Technologies (BEST) Research InstituteLiverpool John Moores UniversityLiverpoolUK
  2. 2.Graduate School of Information Production and SystemsWaseda UniversityKitakyushuJapan

Personalised recommendations