Spatial Query Optimization Based on Transformation of Constraints

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 242)

Abstract

This article describes a problem of spatial query optimization. The processing of such queries is a new area of rapidly developing domain of spatial databases. The main scope of considerations is the impact of constraints type on the speed of execution. Transformation of logical formulas is proposed for some kind of queries as a method of optimization. Proposed decompositions of queries were done according to the logic and set theory. It is experimentally proved that the presented way of optimization is efficient.

Keywords

spatial databases query optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aptekorz, M., Szostek, K., Młynarczuk, M.: Spatial database acceleration using graphic card processors and user-defined functions. Studia Informatica 33(2B(106)), 145–152 (2012)Google Scholar
  2. 2.
    Bajerski, P.: Optimization of geofield queries. In: Proceedings of the 1st International Conference on Information Technology (IT 2008), pp. 1–4 (2008)Google Scholar
  3. 3.
    Bajerski, P.: How to efficiently generate pnr representation of a qualitative geofield. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 595–603. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bajerski, P., Kozielski, S.: Computational model for efficient processing of geofield queries. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 573–583. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Helm, R., Marriott, K., Odersky, M.: Constraint-based query optimization for spatial databases. In: Proceedings of the 10th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1991, pp. 181–191. ACM (1991)Google Scholar
  6. 6.
    ISO/IEC 13249-3:1999: Information technology - Database languages - SQL Multimedia and Application Packages - Part 3: Spatial. International Organization For Standardization (2000)Google Scholar
  7. 7.
    Krawczyk, A.: Attribute and topology of geometric objects systematics attempt in geographic information systems. Studia Informatica 32(2B(97)), 189–201 (2011)Google Scholar
  8. 8.
    Lupa, M., Piórkowski, A.: Rule-based query optimizations in spatial databases. Studia Informatica 33(2B(106)), 105–115 (2012)Google Scholar
  9. 9.
    OGC - The Open Geospatial Consortium, http://www.opengeospatial.org/
  10. 10.
    OpenGIS Implementation Specification for Geographic Information: Simple feature access - Part 2: SQL option, http://www.opengeospatial.org/standards/sfs
  11. 11.
    Papadias, D., Mamoulis, N., Theodoridis, Y.: Constraint-based processing of multiway spatial joins. Algorithmica 30(2), 188–215 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Park, H.H., Lee, Y.J., Chung, C.W.: Spatial query optimization utilizing early separated filter and refinement strategy. Information Systems 25(1), 1–22 (2000)CrossRefMATHGoogle Scholar
  13. 13.
    Piórkowski, A.: Mysql spatial and postgis - implementations of spatial data standards. Electronic Journal of Polish Agricultural Universities (EJPAU) 14(1(03)) (2011)Google Scholar
  14. 14.
    Piórkowski, A., Krawczyk, A.: The problem of object generalization and query optimization in spatial databases. Studia Informatica 32(2B(97)), 119–129 (2011)Google Scholar
  15. 15.
    Roumelis, G., Vassilakopoulos, M., Corral, A.: Performance comparison of xBR-trees and R*-trees for single dataset spatial queries. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 228–242. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Yan, X., Chen, R., Cheng, C., Peng, X.: Spatial query processing engine in spatially enabled database. In: 18th International Conference on Geoinformatics, pp. 1–6. IEEE (2010)Google Scholar
  17. 17.
    Zhang, J., You, S.: Speeding up large-scale point-in-polygon test based spatial join on GPUs. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial 2012, pp. 23–32. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Geoinformatics and Applied Computer ScienceAGH University of Science and TechnologyKrakowPoland

Personalised recommendations