Environmental Modelling Based on Rough-Fuzzy Approach

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 242)


This article deals with the synthesis and analysis of the air quality (AQ) model in the selected localities of the Czech Republic (CR). The model is aimed at dust particles and weather character. Dust particles were selected, because they create an important part of AQ and then they also carry the risk of respiration diseases. The model is created on the basis of hybridization of rough set theory (RST) and fuzzy sets (FSs) theory. Next, it will be called as a rough-fuzzy approach (RFA). The classification results were compared with classifier based on RST, decision trees (DTs) and neural networks (NNs).


air quality classifier fuzzy sets rough set theory rough-fuzzy approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aviso, K.B., Tan, R.R., Culaba, A.B.: Application of rough sets for environmental decision support in industry. Clean Technologies and Environmental Policy 10(1), 53–66 (2007)CrossRefGoogle Scholar
  2. 2.
    Bellander, T., Berglind, N., Gustavsson, P., Jonson, T., Nyberg, F., Pershagen, G., Jarup, L.: Using geographic information systems to assess individual historical exposure to air pollution from traffic and house heating in stockholm. Environmental Health Perspectives 109(6), 633–639 (2001)CrossRefGoogle Scholar
  3. 3.
    Brauer, M., Hoek, G., Van Vliet, P., Meliefste, K., Fischer, P.H., et al.: Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. American Journal of Respiratory and Critical Care Medicine 166(8), 1092–1098 (2002)CrossRefGoogle Scholar
  4. 4.
    Cesky hydrometeorologicky Ustav: Data AIM v grafech, (accessed February 01, 2012)
  5. 5.
    Cesky hydrometeorologicky Ustav: CHU (2012), (accessed February 01, 2012)
  6. 6.
    Corchado, E., Arroyo, A., Tricio, V.: Soft computing models to identify typical meteorological days. Logic Journal of the IGPL 19(2), 373–383 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grzymala-Busse, J.W., Wang, A.Z.: Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proceedings of the 5th International Workshop on Rough Sets and Soft Computing (RSSC 1997) at the 3rd Joint Conference on Information Sciences (JCIS 1997), pp. 69–72 (1997)Google Scholar
  8. 8.
    Horak, J., Hopan, F., Syc, M., Machalek, P., Krpec, K., Ocelka, T., Tomsej, T.: Bilance emisi znecistujicich latek z malych zdroju znecistovani se zamerenim na spalovani tuhych paliv. Chemicke Listy 105(11), 851–855 (2011) (in Czech)Google Scholar
  9. 9.
    Jirava, P., Krupka, J., Kasparova, M.: System modelling based on rough and rough-fuzzy approach. WSEAS Transactions on Information Science and Applications 10(5), 1438–1447 (2008)Google Scholar
  10. 10.
    Kasparova, M.: Prediction models analysis of financing of basic transport services. WSEAS Transaction on Systems 5(1), 211–218 (2006)Google Scholar
  11. 11.
    Kasparova, M., Krupka, J.: Air quality modeling and metamodeling approach. In: Olej, V., Obrsalova, I., Krupka, J. (eds.) Environmental Modeling for Sustainable Regional Development: System Approaches and Advanced Methods, vol. 59, pp. 144–161. IGI Global (2009)Google Scholar
  12. 12.
    Kasparova, M., Petr, P.: The model of municipalities classification by using of decision trees. WSEAS Transaction on Information Science and Applications 3, 704–711 (2006)Google Scholar
  13. 13.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization, A New Trend in and Decision Making, pp. 3–98. Springer, Singapore (1998)Google Scholar
  14. 14.
    Kudo, Y., Murai, T.: A method of generating decision rules in object oriented rough set models. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 338–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Maimon, O.Z., Rokach, L.: Decomposition Methodology for Knowledge Discovery and Data Mining. World Scientific Publishing (2005)Google Scholar
  16. 16.
    Mezera, F., Křupka, J.: Local model of the air quality on the basis of rough sets theory. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 277–286. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Neri, M., Ugolini, D., Bonassi, S., Fucic, A., Holland, N., et al.: Children’s exposure to environmental pollutants and biomarkers of genetic damage: II. results of a comprehensive literature search and meta-analysiss. Mutation Research/Reviews in Mutation Researchy 612(1), 14–39 (2006)CrossRefGoogle Scholar
  18. 18.
    Pal, S.K., Skowron, A.: Rough-Fuzzy Hybridization: A New Trend in Decision Making. Springer (1999)Google Scholar
  19. 19.
    Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers (1991)Google Scholar
  20. 20.
    Pawlak, Z.: Rough set approach to knowledge-based decision support. European Journal of Operational Researchy 99(1), 48–57 (1997)CrossRefMATHGoogle Scholar
  21. 21.
    Portney, P.R., Stavins, R.N.: Public Policies for Environmental Protection. RFF Press, Washington, DC (2000)Google Scholar
  22. 22.
    Rokach, L., Maimon, O.Z.: Data mining with decision trees: Theory and applications. World Scientific Publishing (2008)Google Scholar
  23. 23.
    Stanczyk, U.: On construction of optimised rough set-based classifier. International Journal of Mathematical Models and Methods in Applied Sciences 2(4), 533–542 (2008)Google Scholar
  24. 24.
    WHO, IPCS: Environmental health criteria 210 - Principles for the assessment of risks to human health from exposure to chemicals. World Health Organization, Geneva (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of System Engineering and Informatics, Faculty of Economics and AdministrationUniversity of PardubicePardubiceCzech Republic

Personalised recommendations