Advertisement

Application of the Cellular Automata for Obtaining Pitting Images during Simulation Process of Their Growth

  • Bohdan Rusyn
  • Roxana Tors’ka
  • Mykhailo Kobasyar
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 242)

Abstract

The paper describes obtaining pitting images in processes of their growth and metal surface destruction simulation by cellular automata (CA) method application. Dynamic process of destruction of the analyzed areas is shown. New algorithm of simulation and a series of evolution local rules for cells of automaton by image reproduction are presented. Modeling using cellular automata enables a creation of the simulation of dynamic systems with high correctness of physics processes, including the micro-level. Nowadays there exist a lot of problems dealing with the formation and growing of pittings because of lack of appropriate methods which enable to monitor micro-scale of destruction for such material like austenitic stainless steels. Considering these factors, it can be argued that this approach is extremely effective, along with others. It was found that the use of cellular automata for modeling is more effective in comparison with existing methods: Monte Carlo method, finite volume method and voxel method.

Keywords

numerical simulation cellular automata image processing pitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bohni, H., Suter, T., Schreyer, A.: Micro- and nanotechniques to study localized corrosion. Electrochimica Acta 40(10), 1361–1368 (1995)CrossRefGoogle Scholar
  2. 2.
    Casillas, N., Charlebois, S.J., Smyrl, W.H., White, H.S.: Scanning electrochemical microscopy of precursor sites for pitting corrosion on titanium. Journal of the Electrochemical Society 140(9), L142–L145 (1993)Google Scholar
  3. 3.
    Cheng, Y.F., Luo, J.L.: Electronic structure and pitting susceptibility of passive film on carbon steel. Electrochimica Acta 44(17), 2947–2957 (1999)CrossRefGoogle Scholar
  4. 4.
    Cheng, Y.F., Luo, J.L.: Metastable pitting of carbon steel under potentiostatic control. Journal of the Electrochemical Society 146(3), 970–976 (1999)CrossRefGoogle Scholar
  5. 5.
    Cheng, Y.F., Luo, J.L.: Passivity and pitting of carbon steel in chromate solutions. Electrochimica Acta 44(26), 4795–4804 (1999)CrossRefGoogle Scholar
  6. 6.
    Frankel, G.S.: Pitting corrosion of metals: A review of the critical factors. Journal of the Electrochemical Society 145(6), 2186–2198 (1998)CrossRefGoogle Scholar
  7. 7.
    Kobayashi, Y., Virtanen, S., Bohni, H.: Microelectrochemical studies on the influence of cr and mo on nucleation events of pitting corrosion. Journal of the Electrochemical Society 147(1), 155–159 (2000)CrossRefGoogle Scholar
  8. 8.
    Landolt, D.: Corrosion et Chimie de Surfaces des Matriaux. Presse polytechniques et universitaires romandes, Lausanne (1993)Google Scholar
  9. 9.
    Li, L., Li, X., Dong, C., Huang, Y.: Computational simulation of metastable pitting of stainless steel. Electrochimica Acta 54(26), 6389–6395 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, W., Packard, N.H., Langton, C.G.: Transition phenomena in cellular automata rule space. Physica D: Nonlinear Phenomena 45(1-3), 77–94 (1990)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Malki, B., Baroux, B.: Computer simulation of the corrosion pit growth. Corrosion Science 47(1), 171–182 (2005)CrossRefGoogle Scholar
  12. 12.
    Meakin, P., Jossang, T., Feder, J.: Simple passivation and depassivation model for pitting corrosion. Physical Review E 48(4), 2906–2916 (1993)CrossRefGoogle Scholar
  13. 13.
    Park, J.O., Paik, C.H., Alkire, R.C.: Scanning microsensors for measurement of local ph distributions at the microscale. Journal of the Electrochemical Society 143(8), L174–L176 (1996)Google Scholar
  14. 14.
    Pidaparti, R.M., Palakal, M.J., Fang, L.: Cellular automata approach to aircraft corrosion growth. International Journal on Artificial Intelligence Tools 14(1-2), 361–366 (2005)CrossRefGoogle Scholar
  15. 15.
    Saunier, J., Chausse, A., Stafiej, J., Badiali, J.P.: Simulations of diffusion limited corrosion at the metal environment interface. Journal of Electroanalytical Chemistry 563(2), 239–247 (2004)CrossRefGoogle Scholar
  16. 16.
    Saunier, J., Dymitrowska, M., Chaussé, A., Stafiejb, J., Badiali, J.P.: Diffusion, interactions and universal behavior in a corrosion growth model. Journal of Electroanalytical Chemistry 582(1-2), 267–273 (2005)CrossRefGoogle Scholar
  17. 17.
    Shmoilov, V.I., Adamackyy, A., Rusyn, B.P.: Pulsyruyuschye informacyonnye reshetky. Merkator, Lvov (2004)Google Scholar
  18. 18.
    Still, J.W., Wipf, D.O.: Breakdown of the iron passive layer by use of the scanning electrochemical microscope. Journal of the Electrochemical Society 144, 2657–2665 (1997)CrossRefGoogle Scholar
  19. 19.
    Szklarska-Smialowska, Z.: Pitting and Crevice Corrosion. NACE International Press (2004)Google Scholar
  20. 20.
    Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D: Nonlinear Phenomena 10(1-2), 117–127 (1984)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vautrin-Ul, C., Taleb, A., Stafiej, J., Chaussé, A., Badiali, J.: Mesoscopic modelling of corrosion phenomena: Coupling between electrochemical and mechanical processes, analysis of the deviation from the faraday law. Electrochimica Acta 52(17), 5368–5376 (2007)CrossRefGoogle Scholar
  22. 22.
    Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press (1966)Google Scholar
  23. 23.
    Wolfram, S.: Twenty problems in the theory of cellular automata. Phys. Scr. T9, 170–183 (1985)Google Scholar
  24. 24.
    Wolfram, S.: Theory and Application of Cellular Automata. World Scientific Publishing Company (1986)Google Scholar
  25. 25.
    Wolfram, S.: Cellular Automata and Complexity. Westview Press (1994)Google Scholar
  26. 26.
    Wolfram, S.: A New Kind of Science. Wolfram Media (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bohdan Rusyn
    • 1
  • Roxana Tors’ka
    • 1
  • Mykhailo Kobasyar
    • 1
  1. 1.IPM NASULvivUkraine

Personalised recommendations