Advertisement

Generalized Bruhat Decomposition in Commutative Domains

  • Gennadi Malaschonok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8136)

Abstract

Deterministic recursive algorithms for the computation of generalized Bruhat decomposition of the matrix in commutative domain are presented. This method has the same complexity as the algorithm of matrix multiplication.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grigoriev, D.: Analogy of Bruhat decomposition for the closure of a cone of Chevalley group of a classical series. Soviet Math. Dokl. 23, 393–397 (1981)Google Scholar
  2. 2.
    Grigoriev, D.: Additive complexity in directed computations. Theoretical Computer Science 19, 39–67 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Malaschonok, G.: Fast Generalized Bruhat Decomposition. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 194–202. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Malaschonok, G.I.: Matrix Computational Methods in Commutative Rings. Tambov University Publishing House, Tambov (2002)Google Scholar
  5. 5.
    Malaschonok, G.I.: Effective matrix methods in commutative domains. In: Krob, D., Mikhalev, A.A., Mikhalev, A.V. (eds.) Formal Power Series and Algebraic Combinatorics, pp. 506–517. Springer, Berlin (2000)CrossRefGoogle Scholar
  6. 6.
    Malaschonok, G.I.: A fast algorithm for adjoint matrix computation. Tambov University Reports 5(1), 142–146 (2000)Google Scholar
  7. 7.
    Malaschonok, G.I.: Fast matrix decomposition in parallel computer algebra. Tambov University Reports 15(4), 1372–1385 (2010)MathSciNetGoogle Scholar
  8. 8.
    Malaschonok, G.I.: On the fast generalized Bruhat decomposition in domains. Tambov University Reports 17(2), 544–550 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Gennadi Malaschonok
    • 1
  1. 1.Tambov State UniversityTambovRussia

Personalised recommendations