On Stationary Sets of Euler’s Equations on so(3,1) and Their Stability

  • Valentin Irtegov
  • Tatyana Titorenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8136)


With the use of computer algebra methods we investigate two recent found cases of integrability (in the Liouville sense) of Euler’s equations on the Lie algebra so(3,1) when the equations possess additional polynomial first integrals of degrees 3 and 6. The problems of obtaining stationary sets of the equations and investigation of their stability are considered. In addition to the sets obtained earlier [1], we have found new zero-dimensional and nonzero-dimensional stationary sets. For a number of the sets we have derived sufficient conditions of their stability and instability.


Euler’s equations stationary sets stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Irtegov, V., Titorenko, T.: On invariant manifolds of dynamical systems in Lie algebras. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 142–154. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bogoyavlenskii, O.I.: Integrable Euler equations on Lie algebras arising in problems of mathematical physycs. Math. USSR-Izv. 25(2), 207–257 (1985)CrossRefGoogle Scholar
  3. 3.
    Borisov, A.V., Mamayev, I.S.: Dynamics of a Rigid Body. R&C Dynamics, Izhevsk (2001)Google Scholar
  4. 4.
    Sokolov, V.V.: A new integrable case for the Kirchhoff equation. Theoret. and Math. Phys. 129(1), 1335–1340 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Borisov, A.V., Mamayev, I.S., Sokolov, V.V.: A new integrable case on so(4). Dokl. Phys. 46(12), 888–889 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Morozov, V.P.: The topology of Liouville foliations for the cases of Steklov’s and Sokolov’s integrability. Sb. Math. 195(3), 369–412 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ryabov, P.E.: Bifurcations of first integrals in the Sokolov case. Theoret. and Math. Phys. 134, 181–197 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kozlov, I.K., Ratiu, T.S.: Bifurcation diagram for the Kovalevskaya case on the Lie algebra so(4). Dokl. Math. 86(3), 827 (2012)zbMATHCrossRefGoogle Scholar
  9. 9.
    Tsiganov, A.V., Goremykin, O.V.: Integrable systems on so(4) related with XXX spin chains with boundaries. J. Phys. A: Math. Gen. 37, 4843–4849 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Sokolov, V.V., Wolf, T.: Integrable quadratic classical Hamiltonians on so(4) and so(3,1). J. Phys. A: Mat. Gen. 39, 1915–1926 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Grabmeier, J., Kaltofen, E., Weispfenning, V.: Handbook in Computer Algebra. Foundations, Applications, Systems. Springer, Berlin (2003)CrossRefGoogle Scholar
  12. 12.
    Efimovskaya, O.V., Wolf, T.: Classification of integrable quadratic Hamiltonians on e(3). Reg. and Chaot. Dyn. 8(2), 155–162 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lyapunov, A.M.: On Permanent Helical Motions of a Rigid Body in Fluid. Collected Works, vol. 1. USSR Acad. Sci., Moscow–Leningrad (1954)Google Scholar
  14. 14.
    Irtegov, V.D., Titorenko, T.N.: The invariant manifolds of systems with first integrals. J. Appl. Math. Mech. 73(4), 379–384 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Aubry, P.A., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symb. Comp. 28, 105–124 (1999)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lyapunov, A.M.: Stability of Motion. Academic Press, New York (1966)zbMATHGoogle Scholar
  17. 17.
    Rumyantsev, V.V., Oziraner, A.S.: Motion Stability and Stabilization with Respect to Part of Variables. Nauka, Moscow (1987)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Valentin Irtegov
    • 1
  • Tatyana Titorenko
    • 1
  1. 1.Institute for System Dynamics and Control Theory SB RASIrkutskRussia

Personalised recommendations