Advertisement

Overview on Polymeric Drug Delivery Systems

  • Filippo Rossi
  • Giuseppe Perale
  • Maurizio Masi
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Research in the area of controlled drug delivery systems has gaining increasing interests in the last decades due to the advantages in terms of safety, efficacy (being located in situ) and patient convenience avoiding risks due to surgery. In addition many new-discovered drugs made of peptides are very difficult to administer and drug delivery devices seem to overcome these problems. In general drug delivery devices exist in many forms and can be administered orally, through injection or implantation or transdermally. In this chapter we will focus our attention on the materials used for producing these devices, route of administration and finally on two of the most promising polymer-based drug carrier studied by many research groups all around the world: hydrogels and nanoparticles.

Keywords

Hydrogels Nanoparticles Polymers 

References

  1. Aizawa, Y., Owen, S. C., & Shoichet, M. S. (2012). Polymers used to influence cell fate in 3D geometry: New trends. Progress in Polymer Science, 37, 645–658.CrossRefGoogle Scholar
  2. Anderson, S. B., Lin, C. C., Kuntzler, D. V., & Anseth, K. S. (2011). The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials, 32, 3564–3574.CrossRefGoogle Scholar
  3. Arcos, D., Lopez-Noriega, A., Ruiz-Hernandez, E., Terasaki, O., & Vallet-Regi, M. (2009). Ordered mesoporous microspheres for bone grafting and drug delivery. Chemistry of Materials, 21, 1000–1009.CrossRefGoogle Scholar
  4. Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y. F., Kim, H., Lapitsky, Y., et al. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213.CrossRefGoogle Scholar
  5. Baumann, M. D., Kang, C. E., Tator, C. H., & Shoichet, M. S. (2010). Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials, 31, 7631–7639.CrossRefGoogle Scholar
  6. Chung, C. Y., Yang, J. T., & Kuo, Y. C. (2013). Polybutylcyanoacrylate nanoparticle-mediated neurotrophin-3 gene delivery for differentiating iPS cells into neurons. Biomaterials, 34, 5562–5570.CrossRefGoogle Scholar
  7. Doane, T. L., & Burda, C. (2012). The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society Reviews, 41, 2885–2911.CrossRefGoogle Scholar
  8. Ferrari, R., Yu, Y. C., Morbidelli, M., Hutchinson, R. A., & Moscatelli, D. (2011). Epsilon-Caprolactone-based macromonomers suitable for biodegradable nanoparticles synthesis through free radical polymerization. Macromolecules, 44, 9205–9212.CrossRefGoogle Scholar
  9. Flory, P. J. (1953). Principles of polymer chemistry. New York: Cornell Univeristy Press.Google Scholar
  10. Gauthier, M. A., Gibson, M. I., & Klok, H. A. (2009). Synthesis of functional polymers by post-polymerization modification. Angewandte Chemie. International Edition, 48, 48–58.CrossRefGoogle Scholar
  11. Hu, L. M., Sun, Y., & Wu, Y. (2013). Advances in chitosan-based drug delivery vehicles. Nanoscale, 5, 3103–3111.CrossRefGoogle Scholar
  12. Leung, M. K. M., Hagemeyer, C. E., Johnston, A. P. R., Gonzales, C., Kamphuis, M. M. J., Ardipradja, K., et al. (2012). Bio-click chemistry: enzymatic functionalization of PEGylated capsules for targeting applications. Angewandte Chemie. International Edition, 51, 7132–7136.CrossRefGoogle Scholar
  13. Li, H. R., Yu, Y., Dana, S. F., Li, B., Lee, C. Y., & Kang, L. F. (2013). Novel engineered systems for oral, mucosal and transdermal drug delivery. Journal of Drug Targeting, 21, 611–629.CrossRefGoogle Scholar
  14. Low, K. L., Tan, S. H., Zein, S. H. S., Roether, J. A., Mourino, V., & Boccaccini, A. R. (2010). Calcium phosphate-based composites as injectable bone substitute materials. Journal of Biomedical Materials Research Part B, 94B, 273–286.Google Scholar
  15. Matricardi, P., Di Meo, C., Coviello, T., & Alhaique, F. (2008). Recent advances and perspectives on coated alginate microspheres for modified drug delivery. Expert Opinion on Drug Delivery, 5, 417–425.CrossRefGoogle Scholar
  16. Mora, L., Chumbimuni-Torres, K. Y., Clawson, C., Hernandez, L., Zhang, L. F., & Wang, J. (2009). Real-time electrochemical monitoring of drug release from therapeutic nanoparticles. Journal of Controlled Release, 140, 69–73.CrossRefGoogle Scholar
  17. Mourino, V., & Boccaccini, A. R. (2010). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society, Interface, 7, 209–227.CrossRefGoogle Scholar
  18. Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., & Couvreur, P. (2013). Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 42, 1147–1235.CrossRefGoogle Scholar
  19. Ossipov, D. A., Yang, X., Varghese, O., Kootala, S., & Hilborn, J. (2010). Modular approach to functional hyaluronic acid hydrogels using orthogonal chemical reactions. Chemical Communications, 46, 8368–8370.CrossRefGoogle Scholar
  20. Papa, S., Rossi, F., Ferrari, R., Mariani, A., De Paola, M., Caron, I. et al. (2013). Selective nanovector mediated treatment of activated proinflammatory microglia/macrophage in spinal cord injury. ACS Nano. Google Scholar
  21. Peppas, N. A. (1987). Hydrogels in medicine and pharmacy. Boca Raton, FL: CRC Press.Google Scholar
  22. Perale, G., Rossi, F., Santoro, M., Peviani, M., Papa, S., Llupi, D., et al. (2012). Multiple drug delivery hydrogel system for spinal cord injury repair strategies. Journal of Controlled Release, 159, 271–280.CrossRefGoogle Scholar
  23. Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., et al. (2011a). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345.CrossRefGoogle Scholar
  24. Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., et al. (2011b). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345.CrossRefGoogle Scholar
  25. Qiu, Y., & Park, K. (2012). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 64, 49–60.CrossRefGoogle Scholar
  26. Rao, J. P., & Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36, 887–913.CrossRefGoogle Scholar
  27. Re, F., Gregori, M., & Masserini, M. (2012). Nanotechnology for neurodegenerative disorders. Maturitas, 73, 45–51.CrossRefGoogle Scholar
  28. Rossi, F., Perale, G., Papa, S., Forloni, G., & Veglianese, P. (2013). Current options for drug delivery to the spinal cord. Expert Opinion on Drug Delivery, 10, 385–396.CrossRefGoogle Scholar
  29. Saltzman, W. M. (2001). Drug delivery: Engineering principles for drug therapy. New York: Oxford University Press.Google Scholar
  30. Sehgal, P. K., & Srinivasan, A. (2009). Collagen-coated microparticles in drug delivery. Expert Opinion on Drug Delivery, 6, 687–695.CrossRefGoogle Scholar
  31. Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591.CrossRefGoogle Scholar
  32. Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161, 351–362.CrossRefGoogle Scholar
  33. Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329.CrossRefGoogle Scholar
  34. Tampieri, A., Celotti, G., Landi, E., Montevecchi, M., Roveri, N., Bigi, A., et al. (2003). Porous phosphate-gelatine composite as bone graft with drug delivery function. Journal of Materials Science. Materials in Medicine, 14, 623–627.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Materials and Chemical EngineeringPolitecnico di MilanoMilanItaly
  2. 2.Innovative TechnologiesSUPSIMannoSwitzerland
  3. 3.Department of Chemistry, Materials and Chemical EngineeringPolitecnico di MilanoMilanItaly

Personalised recommendations