Authentic Complex Modelling Problems in Mathematics Education

  • Gabriele Kaiser
  • Martin Bracke
  • Simone Göttlich
  • Christine Kaland
Chapter
Part of the New ICMI Study Series book series (NISS, volume 16)

Abstract

Currently mathematical modelling has become more and more important at all levels of education. Students as well as teachers are engaged in dealing with real life problems where the mathematical content and the mathematical methods are anything but clear at a first glance. These kinds of problems play a major role in many interdisciplinary activities and provide a successful tool to sensitise students to mathematical issues and have the potential to give students insight into the relevance of mathematics in the real world. Since modelling with students has a long tradition at several German universities, we reflect in this chapter our experiences in conducting modelling activities with students especially at secondary level and describe how these activities were implemented. We elaborate the established approach of dealing with authentic and complex modelling examples and give insight into the evaluation of these activities over the last three years.

Notes

Acknowledgments

We thank Sarah Mesrogli for the evaluation of the data.

References

  1. Ableitinger, C., Göttlich, S., & Sickenberger, T. (2009a). Eine Modellierungsaufgabe zum Thema ‘Optimale Auslastung von Flugzeugen’. In A. Brinkmann & R. Oldenburg (Eds.), Materialien für einen realitätsbezogenen Mathematikunterricht, ISTRON (Vol. 14, pp. 83–94). Hildesheim: Franzbecker.Google Scholar
  2. Ableitinger, C., Göttlich, S., & Sickenberger, T. (2009b). Kann Papier sprechen? Eine Modellierungsaufgabe zum Thema ‘Speicherkapazität von 2D Pixel-Mosaiken’. In A. Brinkmann & R. Oldenburg (Eds.), Materialien für einen realitätsbezogenen Mathematikunterricht, ISTRON (Vol. 14, pp. 113–123). Hildesheim: Franzbecker.Google Scholar
  3. Blomhøj, M., & Jensen, T.H. (2003). Developing mathematical modeling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139.Google Scholar
  4. Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht—Trends und Perspektiven. In G. Kadunz, et al. (Eds.), Trends und Perspektiven. Schriftenreihe Didaktik der Mathematik (Vol. 23, pp. 15–38). Wien: Hölder-Pichler-Tempsky.Google Scholar
  5. Blum, W., Galbraith, P. L., Henn, H. -W., & Niss, M. (Eds.). (2007). Modelling and Applications in Mathematics Education. The 14th ICMI Study. New York: Springer.Google Scholar
  6. Borromeo Ferri, R. (2011). Wege zur Innenwelt des mathematischen Modellierens. Wiesbaden: Vieweg + Teubner.Google Scholar
  7. Bracke, M. (2004). Optimale GartenbewässerungMathematische Modellierung an den Schnittstellen zwischen Industrie, Schule und Universität. Mitteilungen der Mathematischen Gesellschaft Hamburg, 23(1), 29–48.Google Scholar
  8. Bracke, M. (2007). Why do turtles need a passport?—And what comes then? (Warum brauchen Schildkröten eigentlich einen Personalausweis?—Und was kommt danach?). In Beiträge zum Mathematikunterricht 2007 (pp. 328–331). Hildesheim: Franzbecker.Google Scholar
  9. Bracke, M., Göttlich, S., & Götz, T. (2013). Modellierungsproblem Dart spielen. In R. Borromeo Ferri, G. Greefrath, & G. Kaiser (Eds.), Mathematisches Modellieren für Schule und Hochschule (pp. 147–162) Wiesbaden: Springer Spektrum.Google Scholar
  10. Göttlich, S. (2007). Mathematical modelling at lower secondary level: passport for turtles. (Mathematische Modellierung in der Mittelstufe: Personalausweis für Schildkröten.). In Beiträge zum Mathematikunterricht 2007 (pp. 324–327). Hildesheim: Franzbecker.Google Scholar
  11. Göttlich, S., & Bracke, M. (2009). Eine Modellierungsaufgabe zum Thema: ‘Munterer Partnertausch beim Marienkäfer’. In Beiträge zum Mathematikunterricht 2009 (pp. 93–96). Münster: WTM-Verlag Stein.Google Scholar
  12. Hamacher, H. W., Korn, E., Korn, R., & Schwarze, S. (2004). Mathe & Ökonomie: Neue Ideen für den praxisnahen Unterricht. Wiesbaden: Universum Verlag.Google Scholar
  13. Haines, C. R., & Crouch, R. M. (2006). Getting to grips with real world contexts: Developing research in mathematical modelling. In M. Bosch (Ed.), Proceedings of the Fourth European Society for Research in Mathematics Education CERME4 (1634–1644). IQS FUNDIEMI Business Institute.Google Scholar
  14. Kaiser, G. (1995). Realitätsbezüge im Mathematikunterricht Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, et al. (Eds.), Materialien für einen realitätsbezogenen Mathematikunterricht (pp. 66–84). Bad Salzdetfurth: Franzbecker.Google Scholar
  15. Kaiser, G. (2005). Mathematical Modelling in School—Examples and Experiences. In H.-W. Henn & G. Kaiser (Eds.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation. Festschrift für Werner Blum (pp. 99–108). Hildesheim: Franzbecker.Google Scholar
  16. Kaiser, G., Lederich, C., & Rau, V. (2010). Theoretical Approaches and Examples for Modelling in Mathematics Education. In B. Kaur & J. Dindyal (Eds.), Mathematical Applications and Modelling. Yearbook 2010, Association of Mathematics Educators (pp. 219–246). Singapore: World Scientific Publishing.Google Scholar
  17. Kaiser, G., & Schwarz, B. (2006). Mathematical Modelling as Bridge between School and University. ZDM—The International Journal on Mathematics Education, 38(2), 196–208.CrossRefGoogle Scholar
  18. Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education—examples and experiences. Journal für Mathematik-Didaktik, 31(1), 51–76.CrossRefGoogle Scholar
  19. Kaiser, G., Schwarz, B., & Buchholtz, N. (2011). Authentic Modelling Problems in Mathematics Education. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling: ICTMA 14 (pp. 585–594). New York: Springer.CrossRefGoogle Scholar
  20. Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM—The International Journal on Mathematics Education, 38(3), 302–310.CrossRefGoogle Scholar
  21. Kaiser, G., & Stender, P. (2013). Complex Modelling Problems in Co-operative, Self-Directed Learning Environments. In G.A. Stillmann et al. (Eds.), Teaching Mathematical Modelling: Connecting to Research and Practice, International Perspectives on the Teaching and Learning of Mathematical Modelling (pp. 45–60). Dordrecht: Springer.Google Scholar
  22. Kaiser-Messmer, G. (1986). Anwendungen im Mathematikunterricht. Bad Salzdetfurth: Franzbecker.Google Scholar
  23. Niss, M. (1992). Applications and modelling in school mathematics—directions for future development. Roskilde: IMFUFA Roskilde Universitetscenter.Google Scholar
  24. Pollak, H. (1969). How can we teach applications of mathematics. Educational Studies in Mathematics, 2(1), 393–404.CrossRefGoogle Scholar
  25. Strauss, A., & Corbin, J. (1998). Basics of Qualitative Research. Newbury Park: Sage.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Gabriele Kaiser
    • 1
  • Martin Bracke
    • 2
  • Simone Göttlich
    • 3
  • Christine Kaland
    • 4
  1. 1.Faculty of EducationUniversity of HamburgHamburgGermany
  2. 2.Technical University of KaiserslauternKaiserslauternGermany
  3. 3.School of Business Informatics and MathematicsUniversity of MannheimMannheimGermany
  4. 4.Department of MathematicsUniversity of HamburgHamburgGermany

Personalised recommendations