Skip to main content

Identification of Alzheimer’s Disease Using Incomplete Multimodal Dataset via Matrix Shrinkage and Completion

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8184))

Included in the following conference series:

Abstract

Incomplete dataset due to missing values is ubiquitous in multimodal neuroimaging data. Denoting an incomplete dataset as a feature matrix, where each row contains feature values of the multi-modality data of a sample, we propose a framework to predict the corresponding interrelated multiple target outputs (e.g., diagnosis label and clinical scores) from this feature matrix. This is achieved by applying a matrix completion algorithm on a shrunk version of the feature matrix that is augmented with the corresponding target output matrix, to simultaneously predict the missing feature values and the unknown target outputs. We shrink the matrix by first partition the large incomplete feature matrix into smaller submatrices that contain complete feature data. Treating each target output prediction from the submatrix as a task, we perform multi-task learning based feature and sample selections to select the most discriminative features and samples from each submatrix. Features and samples which are not selected from any of the submatrices are removed, resulting in a shrunk feature matrix, which is still incomplete. This shrunk matrix together with its corresponding target matrix (of possibly unknown values) are finally simultaneously completed using a low rank matrix completion algorithm. Experimental results using the ADNI dataset indicate that our proposed framework yields better identification accuracy at higher speed compared with conventional imputation-based identification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations of Computational Mathematics 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Goldberg, A., Zhu, X., Recht, B., Xu, J., Nowak, R.: Transduction with matrix completion: three birds with one stone. In: Advances in Neural Information Processing Systems, vol. 23, pp. 757–765 (2010)

    Google Scholar 

  3. Kabani, N.J.: A 3D atlas of the human brain. Neuroimage 7, S717 (1998)

    Google Scholar 

  4. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming 128(1), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Schneider, T.: Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate 14(5), 853–871 (2001)

    Article  Google Scholar 

  6. Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. on Medical Imaging 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  7. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for dna microarrays. Bioinformatics 17(6), 520–525 (2001)

    Article  Google Scholar 

  8. Wang, Y., Nie, J., Yap, P.-T., Shi, F., Guo, L., Shen, D.: Robust deformable-surface-based skull-stripping for large-scale studies. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 635–642. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59(2), 895–907 (2012)

    Article  Google Scholar 

  10. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans. on Medical Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Thung, KH., Wee, CY., Yap, PT., Shen, D. (2013). Identification of Alzheimer’s Disease Using Incomplete Multimodal Dataset via Matrix Shrinkage and Completion. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02267-3_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02266-6

  • Online ISBN: 978-3-319-02267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics