Skip to main content

Temporally Dynamic Resting-State Functional Connectivity Networks for Early MCI Identification

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8184))

Included in the following conference series:

Abstract

Resting-state functional Magnetic Resonance Imaging (R-fMRI) scan provides a rich characterization of the dynamic changes or temporal variabilities caused by neural interactions that may happen within the scan duration. Multiple functional connectivity networks can be estimated from R-fMRI time series to effectively capture subtle yet short neural connectivity changes induced by disease pathologies. To effectively extract the temporally dynamic information, we utilize a sliding window approach to generate multiple shorter, yet overlapping sub-series from a full R-fMRI time series. Whole-brain sliding window correlations are computed based on these sub-series to generate a series of temporal networks, characterize the neural interactions between brain regions at different time scales. Individual estimation of these temporal networks overlooks the intrinsic temporal smoothness between successive overlapping R-fMRI sub-series. To handle this problem, we suggest to jointly estimate temporal networks by maximizing a penalized log likelihood via a fused lasso regularization: 1) l 1-norm penalty ensures a sparse solution; 2) fused regularization preserves the temporal smoothness while allows correlation variability. The estimated temporal networks were applied for early Mild Cognitive Impairment (eMCI) identification, and our results demonstrate the importance of including temporally dynamic R-fMRI scan information for accurate diagnosis of eMCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.T.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)

    Article  Google Scholar 

  2. Chang, C., Glover, G.H.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50(1), 81–98 (2010)

    Article  Google Scholar 

  3. Danaher, P., Wang, P., Witten, D.M.: The joint graphical lasso for inverse covariance estimation across multiple classes. Arxiv preprint arXiv:1111.0324 (2012)

    Google Scholar 

  4. Fennema-Notestine, C., Hagler Jr., D.J., McEvoy, L.K., Fleisher, A.S., Wu, E.H., Karow, D.S., Dale, A.M., Alzheimer’s Disease Neuroimaging Initiative: Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum. Brain Mapp. 30(10), 3238–3253 (2009)

    Google Scholar 

  5. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  MATH  Google Scholar 

  6. Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V.: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. U. S. A. 101(13), 4637–4642 (2004)

    Article  Google Scholar 

  7. Handwerker, D.A., Roopchansingh, V., Gonzalez-Castillo, J., Bandettini, P.A.: Periodic changes in fMRI connectivity. Neuroimage 63(3), 1712–1719 (2012)

    Article  Google Scholar 

  8. Sheline, Y.I., Raichle, M.E.: Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry (in press, 2013)

    Google Scholar 

  9. Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W., Beckmann, C.F., Jenkinson, M., Andersson, J., Glasser, M.F., Van Essen, D.C., Feinberg, D.A., Yacoub, E.S., Ugurbil, K.: Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. U. S. A. 109(8), 3131 (2012)

    Article  Google Scholar 

  10. Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for fMRI. Neuroimage 54(2), 875–891 (2011)

    Article  Google Scholar 

  11. Sporns, O.: The human connectome: A complex network. Ann. N. Y. Acad. Sci. 1224, 109–125 (2011)

    Article  Google Scholar 

  12. Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4, e1000100 (2008)

    Google Scholar 

  13. Tibshirani, R., Sauders, M., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Statist. Soc. B 67(1), 91–108 (2005)

    Article  MATH  Google Scholar 

  14. Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., Jack Jr., C.R.: 3D maps from multiple mri illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130(7), 1777–1786 (2007)

    Article  Google Scholar 

  15. Yang, S., Pan, Z., Shen, X., Wonka, P., Ye, J.: Fused multiple graphical lasso. Arxiv preprint arXiv:1209.2139 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Wee, CY., Yang, S., Yap, PT., Shen, D. (2013). Temporally Dynamic Resting-State Functional Connectivity Networks for Early MCI Identification. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02267-3_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02266-6

  • Online ISBN: 978-3-319-02267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics