Advertisement

The Development of Biaxial Testing Devices and Procedures for Architectural Fabrics

  • Paolo BeccarelliEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter analyses the technical requirements for the development of biaxial testing devices and procedures for architectural fabrics. The description includes the overall shape and stiffness of the frame, the sample shape and dimensions, the clamping system, the stroke of the actuators, the loading profile, the transducers for force, strain and displacement, the temperature and humidity conditions, the control system and the calibration. Finally, the chapter describes the aspects which should be considered in the development of a testing protocol.

Keywords

CEN TC248 MSAJ Biaxial Machine Testing Procedure Protocol Architectural fabrics Foils 

References

  1. ASTM D5034–09:2013 Standard test method for breaking strength and elongation of textile fabrics (Grab Test). American Society for Testing and Materials InternationalGoogle Scholar
  2. Bartle NJ, Gosling PD, Bridgens BN (2013) A neutral network material model for the analysis of fabric structures. In: Bogner-Balz H, Mollaert M, Pusat E (Eds), Tensinet symposium [RE]thinking lightweight structures, Istanbul, pp 33–41Google Scholar
  3. Beccarelli P, Bridgens BN, Galliot C, Gosling P, Stimpfle B, Zanelli A (2011) Round-robin biaxial tensile testing of architectural coated fabrics. In: International symposia IABSE-IASS 2011: taller, longer, lighter. London, pp 1–10Google Scholar
  4. Beccarelli P, Colasante G, Novati G, Stimpfle B, Zanelli A (2013) Strain-controlled biaxial tests of coatedfabric membranes. In: Bogner-Balz H, Mollaert M, Pusat E (eds), Tensinet Symposium [RE]THINKING Lightweight Structures, Istanbul, May 2013, pp 53–65Google Scholar
  5. Blum R, Bögner-Balz H (2001) A new class of biaxial machine. TensiNews, 1:4Google Scholar
  6. Blum R, Bogner-Balz H (2002) Evaluation method for the elastic moduli. Tensinews, 3:3Google Scholar
  7. Blum R, Bogner-Balz H (2007) Tears and damages in textile architecture: should tear propagation be considered for design?. In: Bogner-Balz H, Zanelli A (eds) Tensinet Symposium 2007. Ephemeral architecture, time and textiles, Milano, April 2007.Clup, Milano, pp 239–248Google Scholar
  8. Blum R, Bögner H, Némoz G (2004) Testing methods and standards. In: Foster B, Mollaert M (eds) European design guide for tensile surface structures. TensiNet, Brussels, pp 294–322Google Scholar
  9. Bögner H (2004) Vorgespannte Konstruktionen aus beschichteten Geweben und die Rolle des Schubverhaltens bei der Bildung von zweifach gekrümmten Flächen aus ebenen Streifen. PhD thesis, Institut für Werkstoffe im Bauwesen der Universität StuttgartGoogle Scholar
  10. Boisse P, Borr M, Buet K, Cherouat A (1997) Finite element simulations of textile composite forming including the biaxial fabric behaviour. Compos B Eng 28(4):453–464CrossRefGoogle Scholar
  11. Bridgens BN (2005) Architectural fabric properties: determination, representation and prediction. PhD thesis, University of Newcastle upon TyneGoogle Scholar
  12. Bridgens B, Birchall M (2012) Form and function: the significance of material properties in the design of tensile fabric structures. Eng Struct 44:1–12CrossRefGoogle Scholar
  13. Bridgens BN, Gosling PD (2004) Direct stress-strain representation for coated woven fabrics. Comput Struct. 82(23–26):1913–1927Google Scholar
  14. Bridgens BN, Gosling PD (2010) Interpretation of results from the MSAJ testing method for elastic constants of membrane materials. In: Bogner-Balz H, Mollaert M (eds) Tensinet symposium 2010. Tensile architecture: connecting past and future, Sofia. GPS 1900, Bulgaria, pp 49–57Google Scholar
  15. Bridgens BN, Gosling PD, Birchall MJS (2004) Membrane material behaviour: concepts, practice and developments. Struct Eng 82(14):28–33Google Scholar
  16. Bridgens BN, Gosling PD, Patterson CH, Rawson SJ, Hove N (2009) Importance of material properties in fabric structure design and analysis. In: Domingo A, Lazaro C (eds) Proceedings of the international association for shell and spatial structures (IASS) symposium 2009. Evolution and trends in design, analysis and construction of shell and spatial structures, Valencia, pp 2180–2191Google Scholar
  17. Carvelli V, Corazza C, Poggi C (2008) Mechanical modelling of monofilament technical textiles. Comput Mater Sci 42(4):679–691CrossRefGoogle Scholar
  18. Checkland PB, Bull TH, Bakker EJ (1958) A two-dimensional load-extension tester for fabrics and film. Text Res J 28(5):399–403CrossRefGoogle Scholar
  19. Chen S, Ding X, Fangueiro R, Yi H, Ni J (2007) Tensile behavior of PVC-coated woven membrane materials under uni- and bi-axial loads. J Appl Polym Sci 107(3):2038–2044CrossRefGoogle Scholar
  20. Day AS (1986) Stress strain equations for non-linear behaviour of coated woven fabrics. In: Heki K (1986) Shells, membranes, and space frames: proceedings of the IASS symposium on membrane structures and space frames. Butterworth-Heinemann Limited, Osaka, pp 17–24Google Scholar
  21. EN ISO 1421:2000 Rubber- or plastics-coated fabrics—determination of tensile strength and elongation at break. European Committee for standardisation. International Organization for StandardizationGoogle Scholar
  22. EN ISO 7500-1:2004 Metallic materials—Verification of static uniaxial testing machines-Part 1: Tension/compression testing machines—Verification and calibration of the force-measuring system. European Committee for standardisation. International Organization for StandardizationGoogle Scholar
  23. EN ISO 899-1:2003 Plastics. Determination of creep behaviour. Tensile creep. European Committee for standardisation. International Organization for StandardizationGoogle Scholar
  24. EN ISO 4674-1:2003 Rubber- or plastics-coated fabrics—Determination of tear resistance - Part 1: Constant rate of tear methods. European Committee for standardisation. International Organization for StandardizationGoogle Scholar
  25. EN ISO 2231:1995 Rubber- Or Plastics-coated Fabrics—Standard Atmospheres For Conditioning And Testing. European Committee for standardisation. International Organization for StandardizationGoogle Scholar
  26. EN ISO 291:2008 Plastics—Standard atmospheres for conditioning and testing. European Committee for standardisation. International Organization for StandardizationGoogle Scholar
  27. EN ISO 2286-1:1998 Rubber- or plastics-coated fabrics - Determination of roll characteristics - Part 1: Methods for determination of length, width and net massGoogle Scholar
  28. Foster B, Mollaert M (eds) (2004) European design guide for tensile surface structures. TensiNet, BrusselsGoogle Scholar
  29. Galliot C, Luchsinger RH (2009) A simple model describing the non-linear biaxial tensile behaviour of PVC-coated polyester fabrics for use in finite element analysis. Compos Struct 90(4):438–447CrossRefGoogle Scholar
  30. Galliot C, Luchsinger RH (2010) Biaxial testing of architectural membranes and foils. In: Bogner-Balz H, Mollaert M (eds) Tensinet Symposium 2010. Tensile Architecture: Connecting Past and Future, Sofia, Sept 2010. GPS 1900, Bulgaria, pp 39–48Google Scholar
  31. Gosling PD, Bridgens BN (2007) Material testing and computational mechanics—a new philosophy for architectural fabrics. In: Bogner-Balz H, Zanelli A (eds) Tensinet symposium 2007. Ephemeral architecture, time and textiles, Milano, Clup, pp 75–98Google Scholar
  32. Gosling PD, Bridgens BN (2008) Material testing and computational mechanics: a new philosophy for architectural fabrics. Int J Space Struct 23(4):215–232CrossRefGoogle Scholar
  33. Happold E (1987) Design and Construction of the Diplomatic Club, Riyadh. Struct Eng 65(10):377–382Google Scholar
  34. Kyoung JK, Woong-Ryeol Yu, Min SK (2008) Anisotropic creep modeling of coated textile membrane using finite element analysis. Compos Sci Technol. 68:688–1696Google Scholar
  35. Minami H (2006) A multi-step linear approximation method for nonlinear analysis of stress and deformation of coated plain-weave fabric. J Text Mach Soc Jpn 52(5):189–195Google Scholar
  36. MSAJ/M-02:1995 Testing method for elastic constants of membrane materials. Membrane Structures Association of JapanGoogle Scholar
  37. Pompo JCM (2012) Mechanical characterization of fabrics for inflatable structures. ProQuest, UMI Dissertation PublishingGoogle Scholar
  38. Pudenz J (2004) Materials and workmanship. In: Koch K (ed) Membrane structures: the fifth building material. Prestel, Munich, pp 48–65Google Scholar
  39. Reinhardt HW (1976) On the biaxial testing and strength of coated fabrics. Exp Mech 16(2):71–74CrossRefGoogle Scholar
  40. Seidel M (2009) Tensile surface structures. A practical guide to cable and membrane construction. Materials, design, assembly and erection. Wiley-VCH, WeinheimGoogle Scholar
  41. Uhlemann J, Stranghöner N, Schmidt H, Saxe K (2011) Effects on elastic constants of technical membranes applying the evaluation methods of MSAJ/M-02-1995. In: Oñate E, Kröplin B, Bletzinger K-U (eds) V international conference on textile composites and inflatable structures, structural membranes, Barcelona, pp 1–12Google Scholar
  42. Wakefield D (2004) Membrane engineering. In: Koch K (ed) Membrane structures: the fifth building material. Prestel, Munich, pp 98–123Google Scholar
  43. Woong-Ryeol Yu, Min SK, Joon SK (2006) Modeling of Anisotropic Creep Behavior of Coated Textile Membranes. Fibers Polym. 7(2):123–128Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Architecture and Built EnvironmentUniversity of NottinghamNottinghamUnited Kingdom

Personalised recommendations