Advertisement

Biaxial Testing Apparatuses and Procedures

  • Paolo BeccarelliEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter describes the mechanical data required during the realisation of architectural tensioned covers, the main testing procedures and the testing equipment currently in use for biaxial testing. In addition, the chapter presents the first inter-laboratory study between four research centres which repeated the same biaxial test originally designed for the Juventus Stadium in Turin. The study includes the description of the testing procedure and apparatuses, the overall behaviour of the biaxial machines and the level repeatability of the tests according to the values required by the designer of the membrane roof.

Keywords

Uniaxial Biaxial Shear Bursting Cylinder Tear Test Procedure Equipment Machine Inter-laboratory Round robin Comparisons Juventus Stadium 

References

  1. ASTM D4851-07:2011 Standard test methods for coated and laminated fabrics for architectural use. American Society for Testing and Materials InternationalGoogle Scholar
  2. Barnes M, Grundig L, Moncrieff E (2004) Form-finding, load analysis and patterning. In: Foster B, Mollaert M (eds) European design guide for tensile surface structures. TensiNet, Brussels, pp 205–218Google Scholar
  3. Beccarelli P (2011) Testing for designing. Biaxial testing procedures supporting design, manufacture, erection and maintenance of tension membranes. PhD thesis, Politecnico di MilanoGoogle Scholar
  4. Blum R, Bogner H (2003) Design process of a membrane structure and the relevant material properties. In: Tensinet-symposium: designing tensile architecture, pp 196–203. BrusselGoogle Scholar
  5. Blum R, Bogner-Balz H (2007) Tears and damages in textile architecture: should tear propagation be considered for design? In: Bogner-Balz H, Zanelli A (eds) Tensinet symposium 2007. Ephemeral architecture, time and textiles, Milano, Clup, Milano, pp 239–248Google Scholar
  6. Blum R, Bögner-Balz H (2001) A new class of biaxial machine. TensiNews 1:4Google Scholar
  7. Bögner H (2004) Vorgespannte konstruktionen aus beschichteten geweben und die rolle des schubverhaltens bei der bildung von zweifach gekrümmten flächen aus ebenen streifen. PhD Thesis, Institut für Werkstoffe im Bauwesen der Universität StuttgartGoogle Scholar
  8. Bridgens BN (2005) Architectural fabric properties: determination, representation and prediction. PhD Thesis, University of Newcastle upon TyneGoogle Scholar
  9. Bridgens B, Birchall M (2012) Form and function: the significance of material properties in the design of tensile fabric structures. Eng Struct 44:1–12CrossRefGoogle Scholar
  10. Bridgens BN, Gosling PD (2008) A predictive fabric model for membrane structure design. In: Oñate E, Kröplin B (eds) Textile composites and inflatable structures II. Springer, Dordrecht, pp 35–50CrossRefGoogle Scholar
  11. Bridgens BN, Gosling PD, Birchall MJS (2004) Membrane material behaviour: concepts, practice and developments. Struct Eng 82(14):28–33Google Scholar
  12. Bridgens B, Gosling P, Jou GT, Hsu XY (2012) Inter-laboratory comparison of biaxial tests for architectural textiles. J Text Inst 103(7):706–718CrossRefGoogle Scholar
  13. Carvelli V, Corazza C, Poggi C (2008) Mechanical modelling of monofilament technical textiles. Comput Mater Sci 42(4):679–691CrossRefGoogle Scholar
  14. Checkland PB, Bull TH, Bakker EJ (1958) A two-dimensional load-extension tester for fabrics and film. Text Res J 28(5):399–403CrossRefGoogle Scholar
  15. DIN 53861-3:1970 Testing of textiles; vaulting test and bursting test, tables for the evaluation of tests. German Institute for StandardizationGoogle Scholar
  16. DIN 53363:2003 Determining the tear resistance of plastic film and sheeting by the trouser tear method. German Institute for StandardizationGoogle Scholar
  17. EN ISO 13934-1:1999 Textiles—tensile properties of fabrics—part 1: determination of maximum force and elongation at maximum force using the strip method. European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  18. EN ISO 13934-2:2000 Textiles—tensile properties of fabrics—part 2: determination of maximum force using the grab method. European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  19. EN ISO 13937-2:2000 Textiles—tear properties of fabrics—part 2: determination of tear force of trouser-shaped test specimens (single tear method). European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  20. EN ISO 13937-3:2000 Textiles—tear properties of fabrics—part 3: determination of tear force of wing-shaped test specimens (Single tear method). European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  21. EN ISO 13937-4:2000 Textiles—tear properties of fabrics—part 4: determination of tear force of tongue-shaped test specimens (double tear test). European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  22. EN ISO 13937-1:2000 Textiles—tear properties of fabrics—part 1: determination of tear force using ballistic pendulum method (Elmendorf). European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  23. EN ISO 1421:2000 Rubber-or plastics-coated fabrics—determination of tensile strength and elongation at break. European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  24. EN 15619:2014 Rubber or plastic coated fabrics—safety of temporary structures (tents)—specification for coated fabrics intended for tents and related structures. European Committee for StandardisationGoogle Scholar
  25. EN 1875-3:1997 Rubber- or plastics-coated fabrics—determination of tear strength—part 3: Trapezoidal method European Committee for standardisationGoogle Scholar
  26. EN ISO 2411:2000 Rubber-or plastics-coated fabrics—determination of coating adhesion. European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  27. EN ISO 4674-2:1998 Rubber- or plastics-coated fabrics—determination of tear resistance—part 2: ballistic pendulum method. European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  28. EN ISO 4674-1:2003 Rubber- or plastics-coated fabrics—determination of tear resistance—part 1: constant rate of tear methods. European Committee for Standardisation. International Organization for StandardizationGoogle Scholar
  29. Foster B, Mollaert M (eds) (2004) European design guide for tensile surface structures. TensiNet, BrusselsGoogle Scholar
  30. Galliot C, Luchsinger RH (2009) A simple model describing the non-linear biaxial tensile behaviour of PVC-coated polyester fabrics for use in finite element analysis. Compos Struct 90(4):438–447CrossRefGoogle Scholar
  31. Galliot C, Luchsinger RH (2010) The shear ramp: a new test method for the investigation of coated fabric shear behaviour—part I: theory. Compos Part A Appl Sci Manuf 41(12):1743–1749CrossRefGoogle Scholar
  32. Galliot C, Luchsinger RH (2011) Uniaxial and biaxial mechanical properties of ETFE foils. Polym Test 30(4):356–365CrossRefGoogle Scholar
  33. Gaβ S (1990) IL 25: form force mass 5. Universität Stuttgart, Institut für Leichte Flächentragwerke 1990Google Scholar
  34. Geiger M, Hußnätter W, Merklein M (2005) Specimen for a novel concept of the biaxial tension test. J Mater Process Technol 167(2–3):177–183CrossRefGoogle Scholar
  35. Gosh TK (2002) Apparatus and method for biaxial tensile testing of membrane materials. US Patent 6,487,902Google Scholar
  36. Gosling PD, Bridgens BN, Albrecht A, Alpermann H, Angeleri A, Barnes M, Bartle N, Canobbio R, Dieringer F, Gellin S, Lewis W, Mageau N, Mahadevan R, Marion J-M, Marsden P, Milligan E, Phang YP, Sahlin K, Stimpfle B, Suire O, Uhlemann J (2013) Analysis and design of membrane structures: results of a round robin exercise. Eng Struct 48:313–328CrossRefGoogle Scholar
  37. Haas R, Dietzius A (1913) Stoffdehnung und Formänderung der Hülle von Prall-Luftschiffen; Untersuchungen im Luftschiffbau der Siemens-Schuckert-werke, J. Springer, BerlinCrossRefGoogle Scholar
  38. Happold E (1987) Design and construction of the diplomatic club. Riyadh Struct Eng 65(10):377–382Google Scholar
  39. Klein WG (1959) Stress-strain response of fabrics under two-dimensional loading. Text Res J 29(10):816–821CrossRefGoogle Scholar
  40. Lombardi S (2012) New Juventus Stadium. Tensinews 22:23Google Scholar
  41. Losch MH (1971) Bestimmung der mechanischen Konstanten für einen zweidimensionalen, nichtlinearen, anisotropen, elastischen Stoff am Beispiel beschichteter Gewebe. Dissertation, Universität StuttgartGoogle Scholar
  42. Luo Y (2002) Biaxial tension and ultimate deformation of knitted fabric reinforcements. Compos Part A Appl Sci Manuf 33(2):197–203CrossRefGoogle Scholar
  43. Minami H (2006) A multi-step linear approximation method for nonlinear analysis of stress and deformation of coated plain-weave fabric. J Text Mach Soc Jpn 52(5):189–195Google Scholar
  44. Mott R, Huber G, Leewood A (1985) Biaxial test method for characterization of fabric materials used in permanent fabric roof structures. J Test Eval 13(1):9–16CrossRefGoogle Scholar
  45. MSAJ/M-01:1993 Testing method for in-plane shear properties of membrane materials. Membrane Structures Association of JapanGoogle Scholar
  46. MSAJ/M-02:1995 Testing method for elastic constants of membrane materials. Membrane Structures Association of JapanGoogle Scholar
  47. MSAJ/M-03:2003 Test methods for membrane materials (coated fabrics)—qualities and performances. Membrane Structures Association of JapanGoogle Scholar
  48. Podzimek S (2004) Round robin test on the molecular characterization of epoxy resins by liquid chromatography. Int J Polym Anal Charact 9(5):305–316CrossRefGoogle Scholar
  49. Reichardt CH, Woo HK, Montgomery DJ (1953) A two-dimensional load-extension tester for woven fabrics. Text Res J 23(6):424–428CrossRefGoogle Scholar
  50. Reinhardt HW (1976) On the biaxial testing and strength of coated fabrics. Exp Mech 16(2):71–74CrossRefGoogle Scholar
  51. Reuge N, Schmidt FM, Le Maoult Y, Rachik M, Abbé F (2001) Elastomer biaxial characterization using bubble inflation technique. I: experimental investigations. Polym Eng Sci 41(3):522–531CrossRefGoogle Scholar
  52. Sadegh AM, Cavallaro PV, Quigley CJ (2007) Biaxial and shear testing apparatus with force controls. US Patent, 204,169Google Scholar
  53. Treloar LRG (1944) Strains in an inflated rubber sheet, and the mechanism of bursting. Rubber Chem Technol 17(4):957–967CrossRefGoogle Scholar
  54. Uhlemann J, Stranghöner N (2013) Spectra of computed fabric stress and deformation values due to a range of fictitious elastic constants obtained from different established determination procedures. In: Bletzinger KU, Kröplin B, Oñate E (eds) 5th international conference on textile composites and inflatable structures, Structural Membranes, Munich, pp 419–430Google Scholar
  55. Uhlemann J, Stranghöner N, Schmidt H, Saxe K (2011) Effects on elastic constants of technical membranes applying the evaluation methods of MSAJ/M-02-1995. In: Oñate E, Kröplin B, Bletzinger K-U (eds) 5th international conference on textile composites and inflatable structures, structural membranes, Barcellona, pp 1–12Google Scholar
  56. Welsh JS, Adams DF (2002) An experimental investigation of the biaxial strength of IM6/3501-6 carbon/epoxy cross-ply laminates using cruciform specimens. Compos Part A Appl Sci Manuf 33(6):829–839CrossRefGoogle Scholar
  57. ASCE/SEI 55-10 Tensile membrane structures. American Society of Civil EngineersGoogle Scholar
  58. ASTM E691-09 standard practice for conducting an interlaboratory study to determine the precision of a test method. American Society for Testing and Materials InternationalGoogle Scholar
  59. Zhang Y, Zhang Q, Lv H (2012) Mechanical properties of polyvinylchloride-coated fabrics processed with Precontraint® technology. J Reinf Plast Compos 31(23):1670–1684CrossRefGoogle Scholar
  60. Zhang Y, Zhang Q, Ke L, Bei-lei K (2014) Experimental analysis of tensile behaviors of polytetrafluoroethylene-coated fabrics subjected to monotonous and cyclic loading. Text Res J 84(3):231–245CrossRefGoogle Scholar
  61. Zheng J, Komatsu T, Takatera M, Inui S, Bao L, Shimizu Y (2008) Relationship between uniaxial and strip biaxial tensile properties of fabrics. Text Res J 78(3):224–231CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Architecture and Built EnvironmentUniversity of NottinghamNottinghamUK

Personalised recommendations