Enhanced AIDA’s Circuit-Level Optimization Kernel

  • Frederico A. E. Rocha
  • Ricardo M. F. Martins
  • Nuno C. C. Lourenço
  • Nuno C. G. Horta
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter describes how the Gradient Model described in the previous chapter is used to enhance the circuit-level optimization tool, GENOM-POF [1]. GENOM-POF is part of the Analog Integrated circuit Design Automation environment (AIDA) [2], developed in the Integrated Circuits Group at Instituto de Telecomunicações, Lisboa, Portugal. The integration of the gradient model includes both embedding the model in the optimization kernel, and add the model’s setup options to AIDA’s graphical user interface (GUI), which allows the visualization of the results and the configuration of the parameters, such as the objectives, constraints and input variables, ranges, etc.

Keywords

Analog IC design Circuit-level sizing Optimization-based sizing Genetic algorithm Genetic operators Gradient model 

References

  1. 1.
    N. Lourenço, N. Horta, GENOM-POF: multi-objective evolutionary synthesis of analog ICs with corners validation, in Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference (GECCO ‘12), pp. 1119–1126. July 2012. doi: 10.1145/2330163.2330318
  2. 2.
    R. Martins, N. Lourenco, S. Rodrigues, J. Guilherme, N. Horta, AIDA: Automated analog IC design flow from circuit level to layout, in Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), International Conference on, pp. 29–32, Sept 2012. doi: 10.1109/SMACD.2012.6339409
  3. 3.
    R. Martins, N. Lourenço, N. Horta, Generating Analog IC Layouts with LAYGEN II, SpringerBriefs in Applied Sciences and Technology–Computational Intelligence, (Springer, New York, 2013)Google Scholar
  4. 4.
    R. Martins, N. Lourenço, N. Horta, LAYGEN II-automatic layout generation of analog integrated circuits, for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, doi:  10.1109/TCAD.2013.2269050
  5. 5.
    R. Martins, N. Lourenço, N. Horta, Routing analog ICs using a multi-objective multi-constraint evolutionary approach. Analog Integr. Circuits Signal Process. 1–13 (2013). doi: 10.1007/s10470-013-0088-9
  6. 6.
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)Google Scholar
  7. 7.
    K. Deb, M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26(4), 30–45 (1996)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Frederico A. E. Rocha
    • 1
  • Ricardo M. F. Martins
    • 1
  • Nuno C. C. Lourenço
    • 2
  • Nuno C. G. Horta
    • 3
  1. 1.Instituto de TelecomunicaçõesLisbonPortugal
  2. 2.Instituto Técnico SuperiorLisbonPortugal
  3. 3.IST/IT-Integrated Circuits GroupInstituto Superior TécnicoLisbonPortugal

Personalised recommendations