Skip to main content

Lithium Niobate Dielectric Function and Second-Order Polarizability Tensor From Massively Parallel Ab Initio Calculations

  • Conference paper
  • First Online:
  • 1602 Accesses

Abstract

The frequency-dependent dielectric function and the second-order polarizability tensor of ferroelectric LiNbO3 are calculated from first principles. The calculations are based on the electronic structure obtained from density-functional theory. The subsequent application of the GW approximation to account for quasiparticle effects and the solution of the Bethe–Salpeter equation yield a dielectric function for the stoichiometric material that slightly overestimates the absorption onset and the oscillator strength in comparison with experimental measurements. Calculations at the level of the independent-particle approximation indicate that these deficiencies are at least partially related to the neglect of intrinsic defects typical for the congruent material. The second-order polarizability calculated within the independent-particle approximation predicts strong nonlinear coefficients for photon energies above 1.5 eV. The comparison with measured data suggests that self-energy effects improve the agreement between experiment and theory. The intrinsic defects of congruent samples reduce the optical nonlinearities, in particular for the 21 and 31 tensor components, further improving the agreement with measured data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Räuber, Curr. Top. Mater. Sci. 1, 481 (1978)

    Google Scholar 

  2. R.S. Weis, T.K. Gaylord, Appl. Phys. A 37, 191 (1985)

    Article  Google Scholar 

  3. L. Galambos, S.S. Orlov, L. Hesselink, Y. Furukawa, K. Kitamura, S. Takekawa, J. Cryst. Growth 229, 228 (2001)

    Article  Google Scholar 

  4. I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie, F. Abdi, J. Appl. Phys. 90, 5542 (2001)

    Article  Google Scholar 

  5. I.V. Kityk, M. Makowkska-Janusik, M.D. Fontana, M. Aillerie, F. Abdi, J. Phys. Chem. B 105, 12242 (2001)

    Article  Google Scholar 

  6. W.G. Schmidt, M. Albrecht, S. Wippermann, S. Blankenburg, E. Rauls, F. Fuchs, C. Rödl, J. Furthmüller, A. Hermann, Phys. Rev. B 77, 035106 (2008)

    Article  Google Scholar 

  7. W.Y. Ching, Z.Q. Gu, Y.N. Xu, Phys. Rev. B 50, 1992 (1994)

    Article  Google Scholar 

  8. A.M.M.H. Akkus, S. Cabuk, Int. J. Nanoelectron. Mater. 3, 53 (2010)

    Google Scholar 

  9. A. Riefer, S. Sanna, A.V. Gavrilenko, W.G. Schmidt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1929 (2012)

    Article  Google Scholar 

  10. A. Riefer, S. Sanna, A. Schindlmayr, W.G. Schmidt, Phys. Rev. B 87, 195208 (2013)

    Article  Google Scholar 

  11. T. Volk, M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Springer Series in Materials Science (Springer, Berlin, 2010) [Softcover reprint of hardcover 1st ed. 2009 edn.]

    Google Scholar 

  12. N. Zotov, H. Boysen, F. Frey, T. Metzger, E. Born, J. Phys. Chem. Solids 55(2), 145 (1994)

    Article  Google Scholar 

  13. A.P. Wilkinson, A.K. Cheetham, R.H. Jarman, J. Appl. Phys. 74(5), 3080 (1993)

    Article  Google Scholar 

  14. N. Iyi, K. Kitamura, F. Izumi, J. Yamamoto, T. Hayashi, H. Asano, S. Kimura, J. Solid State Chem. 101(2), 340 (1992)

    Article  Google Scholar 

  15. G. Kresse, J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996)

    Article  Google Scholar 

  16. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  17. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  Google Scholar 

  18. L. Hedin, Phys. Rev. 139, A769 (1965)

    Google Scholar 

  19. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

    Article  Google Scholar 

  20. M. Shishkin, G. Kresse, Phys. Rev. B 74, 035101 (2006)

    Article  Google Scholar 

  21. S. Albrecht, L. Reining, R. DelSole, G. Onida, Phys. Rev. Lett. 80, 4510 (1998)

    Article  Google Scholar 

  22. L.X. Benedict, E.L. Shirley, R.B. Bohn, Phys. Rev. Lett. 80, 4514 (1998)

    Article  Google Scholar 

  23. M. Rohlfing, S.G. Louie, Phys. Rev. Lett. 83, 856 (1999)

    Article  Google Scholar 

  24. W.G. Schmidt, S. Glutsch, P.H. Hahn, F. Bechstedt, Phys. Rev. B 67, 085307 (2003)

    Article  Google Scholar 

  25. P.H. Hahn, W.G. Schmidt, F. Bechstedt, Phys. Rev. Lett. 88, 016402 (2001)

    Article  Google Scholar 

  26. D.E. Aspnes, Phys. Rev. B 6, 4648 (1972)

    Article  Google Scholar 

  27. J.L.P. Hughes, J.E. Sipe, Phys. Rev. B 53, 10751 (1996)

    Article  Google Scholar 

  28. R. Leitsmann, W.G. Schmidt, P.H. Hahn, F. Bechstedt, Phys. Rev. B 71, 195209 (2005)

    Article  Google Scholar 

  29. S. Sanna, W.G. Schmidt, Phys. Rev. B 81, 214116 (2010)

    Article  Google Scholar 

  30. M.Z. Huang, W.Y. Ching, Phys. Rev. B 47, 9464 (1993)

    Article  Google Scholar 

  31. E. Wiesendanger, G. Güntherodt, Solid State Commun. 14, 303 (1974)

    Article  Google Scholar 

  32. A.M. Mamedov, M.A. Osman, L.C. Hajieva, Appl. Phys. A 34, 189 (1984)

    Article  Google Scholar 

  33. P. Rinke, A. Schleife, E. Kioupakis, A. Janotti, C. Rödl, F. Bechstedt, M. Scheffler, C. Van de Walle, Phys. Rev. Lett 108(12), 126404 (2012)

    Article  Google Scholar 

  34. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997)

    Article  Google Scholar 

  35. M.M. Choy, R.L. Byer, Phys. Rev. B 14, 1693 (1976)

    Article  Google Scholar 

  36. G.D. Boyd, R.C. Miller, K. Nassau, W.L. Bond, A. Savage, Appl. Phys. Lett. 5(11), 234 (1964)

    Article  Google Scholar 

  37. D.A. Kleinman, R.C. Miller, Phys. Rev. 148, 302 (1966)

    Article  Google Scholar 

  38. R.C. Miller, A. Savage, Appl. Phys. Lett. 9(4), 169 (1966)

    Article  Google Scholar 

  39. J. Bjorkholm, IEEE J. Quantum Electron. 4(11), 970 (1968)

    Article  Google Scholar 

  40. W.F. Hagen, P.C. Magnante, J. Appl. Phys. 40(1), 219 (1969)

    Article  Google Scholar 

  41. R.C. Miller, W.A. Nordland, P.M. Bridenbaugh, J. Appl. Phys. 42, 4145 (1971)

    Article  Google Scholar 

  42. B.F. Levine, C.G. Bethea, Appl. Phys. Lett. 20(8), 272 (1972)

    Article  Google Scholar 

  43. D. Roberts, IEEE J. Quantum Electron. 28(10), 2057 (1992)

    Article  Google Scholar 

  44. S. Cabuk, Cent. Eur. J. Phys. 10(1), 239 (2011)

    Article  Google Scholar 

  45. E. Luppi, H. Hübener, V. Véniard, Phys. Rev. B 82(23), 235201 (2010)

    Article  Google Scholar 

  46. H.H. Nahm, C.H. Park, Phys. Rev. B 78(18), 184108 (2008)

    Article  Google Scholar 

  47. H. Xu, D. Lee, J. He, S. Sinnott, V. Gopalan, V. Dierolf, S. Phillpot, Phys. Rev. B 78(17), 174103 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the DFG as well as supercomputer time provided by the HLRS Stuttgart and the Paderborn PC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Riefer, A. et al. (2013). Lithium Niobate Dielectric Function and Second-Order Polarizability Tensor From Massively Parallel Ab Initio Calculations. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_8

Download citation

Publish with us

Policies and ethics