Skip to main content

Reduction of Numerical Sensitivities in Crash Simulations on HPC-Computers (HPC-10)

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13

Abstract

For practical application in engineering numerical simulations are required to be reliable and reproducible. Unfortunately crash simulations are highly complex and nonlinear and small changes in the initial state can produce big changes in the results. This is caused partially by physical instabilities and partially by numerical instabilities. Aim of the project is to identify the numerical sensitivities in crash simulations and suggest methods to reduce the scatter of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Askes, D. Nguyen, A. Tyas, Increasing the critical time step: micro-inertia, inertia penalties and mass scaling. Comput. Mech. 47, 657–667 (2011). doi:10.1007/s00466-010-0568-z

    Article  MATH  Google Scholar 

  2. D. Benson, Y. Bazilevs, M. Hsu, T. Hughes, Isogeometric shell analysis: the Reissner-Mindlin shell. Comput. Methods Appl. Mech. Eng. 199, 276–289 (2010). doi:10.1016/j.cma.2009.05.011

    Article  MATH  MathSciNet  Google Scholar 

  3. Ch. Eck, O. Mangold, R. Prohl, A. Tkachuk, Reduction of numerical sensitivities in crash simulations on HPC-computers (HPC-10). in High Performance Computing in Science and Engineering ’12, ed. by W.E. Nagel, D.H. Krõner, M.M. Resch (Springer, Berlin, 2013), 547–560. doi:10.1007/978-3-642-33374-3_39

    Google Scholar 

  4. C.A. Felippa, A compendium of FEM integration formulas for symbolic work, Eng. Comput. 21, 867–890 (2004). doi:10.1108/02644400410554362

    Article  MATH  Google Scholar 

  5. S. Gavoille, Enrichissement modal du selective mass scaling (in French), in Proceedings of 11e Colloque National en Calcul des Structures by Calcul des Structures et Modélisation (CSMA, 2013)

    Google Scholar 

  6. O. Mangold. Finite Element Generator User’s Manual (2012)

    Google Scholar 

  7. National Agency for Finite Element Methods & Standards (Great Britain), The Standard NAFEMS Benchmarks (NAFEMS, Hamilton, 1990)

    Google Scholar 

  8. L. Olovsson, K. Simonsson, M. Unosson, Selective mass scaling for explicit finite element analyses. Int. J. Numer. Methods Eng. 63, 1436–1445 (2005). doi:10.1002/nme.1293

    Article  MATH  Google Scholar 

  9. L. Olovsson, K. Simonsson, Iterative solution technique in selective mass scaling. Commun. Numer. Methods Eng. 22, 77–82 (2006) DOI:10.1002/cnm.806

    Article  MATH  Google Scholar 

  10. J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, Berlin, 1998)

    MATH  Google Scholar 

  11. A. Tkachuk, M. Bischoff, Variational methods for selective mass scaling. Comput. Mech. (2013). doi:10.1007/s00466-013-0832-0

    Google Scholar 

  12. A. Tkachuk, M. Bischoff, Applications of variationally consistent selective mass scaling in explicit dynamics, in Proceedings of the Fourth ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece, June 2013, ed. by M. Papadrakakis, V. Papadopoulos, V. Plevris

    Google Scholar 

  13. A. Vogel, S. Reiter, M. Rupp, A. Nägel, G. Wittum. UG 4 - a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. (in press)

    Google Scholar 

  14. C. Wieners. Nonlinear solution methods for infinitesimal perfect plasticity. Z. Angew. Math. Mech. 87, 643–660 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Prohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Eck, C., Kovalenko, Y., Mangold, O., Prohl, R., Tkachuk, A., Trickov, V. (2013). Reduction of Numerical Sensitivities in Crash Simulations on HPC-Computers (HPC-10). In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_48

Download citation

Publish with us

Policies and ethics