Skip to main content

Heterogeneous and Homogeneous Crystallization of Soft Spheres in Suspension

Abstract

Nucleation, i.e., the onset of a phase transition like crystal growth, is a rare event with waiting times in the order of days. Yet, it is an event on the molecular scale, and therefore difficult to study, both experimentally and by computer simulations. Our interest is in the role of long range interactions in nucleation, in particular electrostatic and hydrodynamic interactions mediated by solvent molecules. In order to model the solvent, we use a lattice fluid that is propagated by the fluctuating Lattice Boltzmann (LB) method. Our implementation uses a graphics card (GPU) to propagate the solvent and is coupled to the Molecular Dynamics (MD) simulation package ESPResSo. Using this code, we study the heterogeneous crystallization in Yukawa-like colloidal systems. Our simulations allow to observe the growth of a crystal in a channel with and without hydrodynamic interactions, and indicate that hydrodynamic interactions slow down the crystallization. Additionally, we present results on the homogeneous crystallization of Yukawa particles. While heterogeneous nucleation can be observed directly in simulations, homogeneous nucleation requires special sampling techniques. We use our own Forward Flux Sampling implementation, the Flexible Rare Event Sampling Harness Systems (FRESHS). FRESHS can control popular MD simulation packages as back-end, making it a versatile tool to study rare events. Our simulations confirm previous results at higher supersaturations, which show that the nucleation mechanism involves two steps, namely the formation of a metastable bcc phase and the transformation to a stable fcc phase.

Keywords

  • Message Passing Interface
  • Lattice Boltzmann Method
  • Hydrodynamic Interaction
  • Free Energy Landscape
  • Langevin Thermostat

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-02165-2_3
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-02165-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comp. Phys. Commun. 174(9), 704 (2006)

    CrossRef  Google Scholar 

  2. A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Košovan, C. Holm, in Meshfree Methods for Partial Differential Equations VI, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 89 (Springer, Berlin, 2013), pp.  1–23, http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-642-32978-4

  3. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4(3), 435 (2008)

    CrossRef  Google Scholar 

  4. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995)

    CrossRef  MATH  Google Scholar 

  5. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, New York, 2001)

    MATH  Google Scholar 

  6. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94(3), 511 (1954)

    CrossRef  MATH  Google Scholar 

  7. D. d’Humieres, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 360(1792), 437 (2002)

    Google Scholar 

  8. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. P. Ahlrichs, B. Dünweg, Int. J. Mod. Phys. C 9(8), 1429 (1998)

    CrossRef  Google Scholar 

  10. B. Dünweg, A.J.C. Ladd, in Advanced Computer Simulation Approaches for Soft Matter Sciences III. Advances in Polymer Science, vol. 221 (Springer, Berlin, 2009), pp. 89–166. doi:10.1007/12_2008_4

    Google Scholar 

  11. W. Li, X. Wei, A. Kaufman, Vis. Comput. 19(7), 444 (2003)

    Google Scholar 

  12. NVIDIA Corporation, Getting Started, NVIDIA CUDA Development Tools 3.2 Installation and Verification on Linux (NVIDIA Corporation, Santa Clara, 2010)

    Google Scholar 

  13. NVIDIA Corporation, NVIDIA CUDA C Programming Guide Version 3.2 (NVIDIA Corporation, Santa Clara, 2010)

    Google Scholar 

  14. J. Myre, S. Walsh, D. Lilja, M. Saar, Concurr. Comput. 23(4), 332 (2011)

    CrossRef  Google Scholar 

  15. M.A. Safi, M. Ashrafizaadeh, A.A. Ashrafizaadeh, in International Conference on Fluid Mechanics, Heat Transfer, and Thermodynamics, vol. 73 (World Academy of Science, Engineering and Technology, Las Cruces, 2011), pp. 875–882

    Google Scholar 

  16. C. Feichtinger, S. Donath, H. Köstler, J. Götz, U. Rüde, J. Comput. Sci. 2, 105–112 (2011)

    Google Scholar 

  17. MPI Consortium. The Message Passing Interface (MPI) Standard (2004), http://www.mcs.anl.gov/research/projects/mpi/Homepage

  18. NVIDIA Corporation, NVIDIA CUDA Reference Manual Version 3.2 (NVIDIA Corporation, Santa Clara, 2010)

    Google Scholar 

  19. T.S. van Erp, D. Moroni, P.G. Bolhuis, J. Chem. Phys. 118, 7762 (2003)

    CrossRef  Google Scholar 

  20. R.J. Allen, D. Frenkel, P.R. ten Wolde, J. Chem. Phys. 124, 024102 (2006)

    CrossRef  Google Scholar 

  21. R.J. Allen, C. Valeriani, P.R. ten Wolde, J. Phys. Condens. Matter 21(46), 463102 (2009)

    CrossRef  Google Scholar 

  22. F.A. Escobedo, E.E. Borrero, J.C. Araque, J. Phys. Condens. Matter 21(33), 333101 (2009)

    CrossRef  Google Scholar 

  23. R.J. Allen, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005)

    CrossRef  Google Scholar 

  24. K. Kratzer, A. Arnold, R.J. Allen, J. Chem. Phys. 138(16), 164112 (2013)

    CrossRef  Google Scholar 

  25. E.E. Borrero, F.A. Escobedo, J. Chem. Phys. 129(2), 024115 (2008)

    CrossRef  Google Scholar 

  26. E. Hinch, J. Fluid Mech. 72, 499 (1975)

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. P. Steinhardt, D. Nelson, M. Ronchetti, Phys. Rev. B 28(2), 784 (1983)

    CrossRef  Google Scholar 

  28. D. Moroni, P. Ten Wolde, P. Bolhuis, Phys. Rev. Lett. 94(23), 235703 (2005)

    CrossRef  Google Scholar 

  29. W. Lechner, C. Dellago, arXiv preprint arXiv:0806.3345 (2008)

    Google Scholar 

  30. S. Hamaguchi, R. Farouki, D. Dubin, J. Chem. Phys. 105, 7641 (1996)

    CrossRef  Google Scholar 

  31. S. Auer, D. Frenkel, J. Phys. Condens. Matter 14(33), 7667 (2002)

    CrossRef  Google Scholar 

  32. E. Sanz, C. Valeriani, D. Frenkel, M. Dijkstra, Phys. Rev. Lett. 99, 055501 (2007)

    CrossRef  Google Scholar 

  33. F.E. Azhar, M. Baus, J.P. Ryckaert, E.J. Meijer, J. Chem. Phys. 112(11), 5121 (2000)

    CrossRef  Google Scholar 

  34. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Roehm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Roehm, D., Kratzer, K., Arnold, A. (2013). Heterogeneous and Homogeneous Crystallization of Soft Spheres in Suspension. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_3

Download citation