Skip to main content

Flow Simulation of a Francis Turbine Using the SAS Turbulence Model

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘13

Abstract

The operation of Francis turbines in part load conditions causes high fluctuations and dynamic loads in the turbine and the efficiency of the draft tube decreases strongly. For a better understanding of the various instantaneous phenomena, flow simulations of the complete Francis turbine are done with particular focus on the draft tube flow.The SAS (Scale Adaptive Simulation) model is used as turbulence model. Depending on the grid resolution and the time step size, this model allows the resolution of smaller turbulent structures compared to RANS turbulence models.Flow phenomena in a Francis turbine require long physical time to convect through the machine. Therefore, long computational time with many processors is necessary to conduct such a flow simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Beaudoin, H. Jasak, Development of a generalized grid interface for turbomachinery simulations with OpenFOAM. Open source CFD international conference, Milano, Italy, 2008

    Google Scholar 

  2. Y. Egorov, F.R. Menter, Development and application of SST-SAS turbulence model in the DESIDER project. Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 97 (Springer, Berlin, Heidelberg, 2008), pp. 261–270

    Google Scholar 

  3. Y. Egorov, F.R. Menter, D. Cokljat, The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to aerodynamic flows. J. Flow Turbul. Combust. 85(1), 139–165 (2010)

    Google Scholar 

  4. H. Jasak, H.G. Weller, A.D. Gosman, High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Meth. Fluid. 31, 431–449 (1999)

    Article  MATH  Google Scholar 

  5. D. Jošt, A. Škerlavaj, A. Lipej, Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models. 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China, 2012

    Google Scholar 

  6. G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  7. T. Krappel, I. Buntić-Ogor, O. Kirschner, A. Ruprecht, S. Riedelbauch, Numerical simulation of the vortex rope in a pump turbine. 7th OpenFOAM Workshop, Darmstadt, 25–28 June 2012

    Google Scholar 

  8. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 269–289 (1994)

    Google Scholar 

  9. F.R. Menter, Y. Egorov, The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. J. Flow Turbul. Combust. 85(1), 113–138 (2010)

    Google Scholar 

  10. F.R. Menter, J. Schütze, M. Gritskevich, Global vs. zonal approaches in hybrid RANS-LES turbulence modelling. Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 117 (Springer, Berlin, Heidelberg, 2012), pp. 15–28

    Google Scholar 

  11. A.D. Neto, R. Jester-Zuerker, A. Jung, M. Maiwald, Evaluation of a Francis turbine draft tube flow at part load using hybrid RANS-LES turbulence modelling. 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China, 2012

    Google Scholar 

  12. J.C. Rotta, Turbulente Strömungen (BG Teubner, Stuttgart, 1972)

    Book  MATH  Google Scholar 

  13. M.L. Shur, P.R. Spalart, M.K. Strelets, A.K. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Krappel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Krappel, T., Ruprecht, A., Riedelbauch, S. (2013). Flow Simulation of a Francis Turbine Using the SAS Turbulence Model. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_31

Download citation

Publish with us

Policies and ethics