Skip to main content

Phase Separation of Colloid Polymer Mixtures Under Confinement

  • 1484 Accesses

Abstract

Colloid polymer mixtures exhibit vapor-liquid like and liquid-solid like phase transitions in bulk suspensions, and are well-suited model systems to explore confinement effects on these phase transitions. Static aspects of these phenomena are studied by large-scale Monte Carlo simulations, including novel “ensemble switch” methods to estimate excess free energies due to confining walls. The kinetics of phase separation is investigated by a Molecular Dynamics method, where hydrodynamic effects due to the solvent are included via the multiparticle collision dynamics method.

Keywords

  • Contact Angle
  • Thermodynamic Limit
  • Message Passing Interface
  • Excess Free Energy
  • Finite Size Effect

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958)

    CrossRef  Google Scholar 

  2. S.M. Ilett, A. Orrock, W.C.K. Poon, P.N. Pusey, Phys. Rev. E 51, 1344 (1995)

    CrossRef  Google Scholar 

  3. W.C.K. Poon, J. Phys. Condens. Matter 14, R859 (2002)

    CrossRef  Google Scholar 

  4. E.A.G. Jamie, G.J. Davies, M.D. Howe, R.P.A. Dullens, D.G.A.L. Aarts, J. Phys. Condens. Matter 20, 494231 (2008)

    CrossRef  Google Scholar 

  5. E.A.G. Jamie, R.P.A. Dullens, D.G.A.L. Aarts, J. Chem. Phys. 137, 204902 (2012)

    CrossRef  Google Scholar 

  6. K. Binder, J. Horbach, R. Vink, A. De Virgiliis, Soft Matter 4, 1555 (2008)

    CrossRef  Google Scholar 

  7. K. Binder, P. Virnau, D. Wilms, A. Winkler, Eur. Phys. J. Spec. Top. 197, 227 (2011)

    CrossRef  Google Scholar 

  8. D. Wilms, A. Winkler, P. Virnau, K. Binder, Phys. Rev. Lett. 105, 45701 (2010)

    CrossRef  Google Scholar 

  9. A. Statt, A. Winkler, P. Virnau, K. Binder, J. Phys. Condens. Matter 24, 464122 (2012)

    CrossRef  Google Scholar 

  10. A. Winkler, P. Virnau, K. Binder, R.G. Winkler, G. Gompper, J. Chem. Phys. 138, 054901 (2013)

    CrossRef  Google Scholar 

  11. A. Winkler, P. Virnau, K. Binder, R.G. Winkler, G. Gompper, Europhys. Lett. 100, 16003 (2012)

    CrossRef  Google Scholar 

  12. A. Winkler, A. Statt, P. Virnau, K. Binder, Phys. Rev. E 87(Article ID 032307) (2013)

    Google Scholar 

  13. J. Zausch, P. Virnau, K. Binder, J. Horbach, R.L.C. Vink, J. Chem. Phys. 130, 064906 (2009)

    CrossRef  Google Scholar 

  14. M. Müller, P. Virnau, J. Chem. Phys. 120, 10925 (2004)

    CrossRef  Google Scholar 

  15. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    CrossRef  Google Scholar 

  16. A. Winkler, P. Virnau, K. Binder, in High-Performance Computing in Science and Engineering ’12, ed. by W.E. Nagel et al. (Springer, Berlin, 2013), pp. 29–38

    Google Scholar 

  17. G. Sutmann, R.G. Winkler, G. Gompper, Simulating hydrodynamics of complex fluids: multi-particle collision dynamics coupled to molecular dynamics on massively parallel computers. doi:10.1016/j.cpc.2013.10.004

    Google Scholar 

  18. K. Binder, B.J. Block, P. Virnau, A. Tröster, Am. J. Phys. 80, 1099 (2012)

    CrossRef  Google Scholar 

  19. D. Deb, A. Winkler, P. Virnau, K. Binder, J. Chem. Phys. 136, 134710 (2012)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) under projects TR6/A5 and SPP 1296 VI 237/4-3. We are grateful to the NIC Jülich where exploratory runs, mainly relating to static aspects, were made on the JUROPA supercomputer of the Jülich Supercomputer Centre. The simulations on the kinetics of phase separation were carried out at HERMIT (HLRS). Helpful interactions with G. Gompper, R.G. Winkler, C. Huang and G. Sutmann are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Binder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Statt, A., Winkler, A., Virnau, P., Binder, K. (2013). Phase Separation of Colloid Polymer Mixtures Under Confinement. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘13. Springer, Cham. https://doi.org/10.1007/978-3-319-02165-2_2

Download citation