Multi-Objective Optimization of a Real-World Manufacturing Process Using Cuckoo Search

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 516)

Abstract

This chapter describes the application of Cuckoo Search in simulation-based optimization of a real-world manufacturing process. The optimization problem is a combinatorial problem of setting 56 unique decision variables in a way that maximizes utilization of machines and at the same time minimizes tied-up capital. As in most real-world problems, the two optimization objectives are conflicting and improving performance on one of them deteriorates performance of the other. To handle the conflicting objectives, the original Cuckoo Search algorithm is extended based on the concepts of multi-objective Pareto-optimization.

Keywords

Cuckoo search Simulation-based optimization Multi-objective problem 

References

  1. 1.
    April, J., Better, M. Glover, F., Kelly, J.: New advances for marrying simulation and optimization. In: Proceedings of the 2004 Winter Simulation Conference, Washington, DC, pp. 80–86 (2004)Google Scholar
  2. 2.
    Boesel, J., Bowden, R., Glover, F., Kelly, J., Westwig, E.: Future of simulation optimization. In: Proceedings of the 2001 Winter Simulation Conference, Arlington, VA, pp. 1466–1470 (2001)Google Scholar
  3. 3.
    Laguna, M., Marti, R.: Optimization Software Class Libraries. Kluwer Academic Publishers, Boston (2003)Google Scholar
  4. 4.
    Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)Google Scholar
  5. 5.
    Yang, X.-S., Deb, S.: Cuckoo Search via Levy Flights. In: Proceedings of World Congress on Nature and Biologically Inspired Computing, India, pp. 210–214 (2009)Google Scholar
  6. 6.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Beckington (2010)Google Scholar
  7. 7.
    Yang, X.-S., Deb, S.: Engineering optimisation by Cuckoo Search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)MATHGoogle Scholar
  8. 8.
    Tein, L.H., Ramli, R.: Recent advancements of nurse scheduling models and a potential path. In: Proceedings of 6th IMT-GT Conference on Mathematics, Statistics and its Applications, pp. 395–409 (2010)Google Scholar
  9. 9.
    Dhivya, M., Sundarambal, M., Anand, L.N.: Energy efficient computation of data fusion in wireless sensor networks using Cuckoo based particle approach (CBPA). Int. J. Commun. Netw. Syst. Sci. 4(4), 249–255 (2011)Google Scholar
  10. 10.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, 2nd edn. Wiley, Chichester (2004)Google Scholar
  11. 11.
    Dawkins, R.: The Selfish Gene, 30th edn. Oxford University Press Inc, New York (1989)Google Scholar
  12. 12.
    Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P., Eugene Stanley, H.: Optimizing the success of random searches. Lett. Nat. 401, 911–914 (1999)Google Scholar
  13. 13.
    Gutowski, M.: Lévy flights as an underlying mechanism for global optimization algorithms. Optimization 8 (2001)Google Scholar
  14. 14.
    Leccardi, M.: Comparison of three algorithms for Lèvy noise generation. In: Proceedings of Fifth EUROMECH Nonlinear Dynamics Conference, Mini Symposium on Fractional Derivatives and their Applications (2005)Google Scholar
  15. 15.
    Mantegna, R.N.: Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys. Rev. E 49, 4677–4683 (1994)CrossRefGoogle Scholar
  16. 16.
    Coello Coello, C.A., Lamon, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. Springer Science Business Media LLC, New York (2007)Google Scholar
  17. 17.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan T.: A fast and Elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. VI:2, 182–197 (2002)Google Scholar
  18. 18.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm NSGA-II. KanGAL Report 2000001, Indian Institute of Technology Kanpur, India (2000)Google Scholar
  19. 19.
    Yang, X.-S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  21. 21.
    Reinelt, G. TSPLIB, 8 August, [Online]. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/(2008)
  22. 22.
    Ouaarab, A., Ahiod, B., Yang, X-S.: Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput. Appl. (2013)Google Scholar
  23. 23.
    Gosavi, A.: Simulation-based Optimization: Parametric Optimization Techniques and Reinforcement Learning. Kluwer Academic, Boston (2003)Google Scholar
  24. 24.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRefGoogle Scholar
  25. 25.
    Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human-Computer Interaction, 3rd edn. Wiley, New York (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of SkövdeSkövdeSweden

Personalised recommendations