Skip to main content

Cuckoo Search and Firefly Algorithm Applied to Multilevel Image Thresholding

Part of the Studies in Computational Intelligence book series (SCI,volume 516)

Abstract

Multilevel image thresholding is a technique widely used in image processing, most often for segmentation. Exhaustive search is computationally prohibitively expensive since the number of possible thresholds to be examined grows exponentially with the number of desirable thresholds. Swarm intelligence metaheuristics have been used successfully for such hard optimization problems. In this chapter we investigate performance of two relatively new swarm intelligence algorithms, cuckoo search and firefly algorithm, applied to multilevel image thresholding. Particle swarm optimization and differential evolution algorithms have also been implemented for comparison. Two different objective functions, Kapur’s maximum entropy thresholding function and multi Otsu between-class variance, were used on standard benchmark images with known optima from exhaustive search (up to five threshold points). Results show that both, cuckoo search and firefly algorithm, exhibit superior performance and robustness.

Keywords

  • Swarm intelligence
  • Nature inspired algorithms
  • Optimization metaheuristics
  • Cuckoo search
  • Firefly algorithm
  • Image processing
  • Multilevel image thresholding

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-02141-6_6
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-02141-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. Adollah, R., Mashor, M.Y., Rosline, H., Harun, N.H.: Multilevel thresholding as a simple segmentation technique in acute leukemia images. J. Med. Imaging Health Inf. 2(3), 285–288 (2012)

    CrossRef  Google Scholar 

  2. Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13(6), 3066–3091 (2013)

    CrossRef  Google Scholar 

  3. Bacanin, N., Tuba, M.: Artificial bee colony (ABC) algorithm for constrained optimization improved with genetic operators. Stud. Inf. Control 21(2), 137–146 (2012)

    Google Scholar 

  4. Brajevic, I., Tuba, M.: An upgraded artificial bee colony algorithm (ABC) for constrained optimization problems. J. Intell. Manuf. 24(4), 729– 740 (2013)

    Google Scholar 

  5. Dai, C., Chen, W., Song, Y., Zhu, Y.: Seeker optimization algorithm: a novel stochastic search algorithm for global numerical optimization. J. Syst. Eng. Electron. 21(2), 300–311 (2010)

    Google Scholar 

  6. Dominguez, A.R., Nandi, A.K.: Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection. Comput. Med. Imaging Graph. 32(4), 304–315 (2008)

    CrossRef  Google Scholar 

  7. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. Biosystems 43(2), 73–81 (1997)

    CrossRef  Google Scholar 

  8. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89(23–24), 2325–2336 (2011)

    CrossRef  Google Scholar 

  9. Gandomi, A.H., Yang, X.S.: Evolutionary boundary constraint handling scheme. Neural Comput. Appl. 21(6, SI), 1449–1462 (2012)

    CrossRef  Google Scholar 

  10. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    CrossRef  MathSciNet  Google Scholar 

  11. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Hammouche, K., Diaf, M., Siarry, P.: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng. Appl. Artif. Intell. 23(5), 676–688 (2010)

    CrossRef  Google Scholar 

  13. Harrabi, R., Ben Braiek, E.: Color image segmentation using multi-level thresholding approach and data fusion techniques: application in the breast cancer cells images. EURASIP J. Image Video Process. (2012)

    Google Scholar 

  14. Heikkonen, J., Mantynen, N.: A computer vision approach to digit recognition on pulp bales. Pattern Recogn. Lett. 17(4), 413–419 (1996) (International Conference on Engineering Applications of Neural Networks (EANN 95), Otaniemi, Finland, 21–23 August 1995)

    Google Scholar 

  15. Horng, M.H.: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization. Expert Syst. Appl. 37(6), 4580–4592 (2010)

    CrossRef  Google Scholar 

  16. Horng, M.H.: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst. Appl. 38(11), 13,785–13,791 (2011)

    Google Scholar 

  17. Horng, M.H.: Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39(1), 1078–1091 (2012)

    CrossRef  MathSciNet  Google Scholar 

  18. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. Ser. II 106(4), 620–630 (1957)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Jovanovic, R., Tuba, M.: An ant colony optimization algorithm with improved pheromone correction strategy for the minimum weight vertex cover problem. Appl. Soft Comput. 11(8), 5360–5366 (2011)

    CrossRef  Google Scholar 

  20. Jovanovic, R., Tuba, M.: Ant colony optimization algorithm with pheromone correction strategy for the minimum connected dominating set problem. Comput. Sci. Inf. Syst. (ComSIS) 10(1), 133–149 (2013)

    CrossRef  Google Scholar 

  21. Kapur, E.J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graphics Image Process. 29(3), 273–285 (1985)

    CrossRef  Google Scholar 

  22. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Engineering Faculty, Computer Engineering Department, Erciyes University (2005)

    Google Scholar 

  23. Kazem, A., Sharifi, E., Hussain, F.K., Saberi, M., Hussain, O.K.: Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl. Soft Comput. 13(2), 947–958 (2013)

    CrossRef  Google Scholar 

  24. Marichelvam, M.K.: An improved hybrid Cuckoo Search (IHCS) metaheuristics algorithm for permutation flow shop scheduling problems. Int. J. Bio-Inspired Comput. 4(4, SI), 200–205 (2012)

    CrossRef  Google Scholar 

  25. Ng, H.F.: Automatic thresholding for defect detection. Pattern Recogn. Lett. 27(14), 1644–1649 (2006)

    CrossRef  Google Scholar 

  26. Otsu, N.: A threshold selection method for grey level histograms. EEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    CrossRef  MathSciNet  Google Scholar 

  27. Portes de Albuquerque, M., Esquef, I.A., Gesualdi Mello, A.R.: Image thresholding using tsallis entropy. Pattern Recogn. Lett. 25(9), 1059–1065 (2004)

    Google Scholar 

  28. Sahoo, P., Wilkins, C., Yeager, J.: Threshold selection using Renyi’s entropy. Pattern Recogn. 30(1), 71–84 (1997)

    CrossRef  MATH  Google Scholar 

  29. Sarkar, S., Patra, G.R., Das, S.: A differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding. In: Proceedings of the 2nd International Conference on Swarm, Evolutionary, and Memetic Computing, Part I, pp. 51–58 (2011)

    Google Scholar 

  30. Sathya, P.D., Kayalvizhi, R.: Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst. Appl. 38(12), 15,549–15,564 (2011)

    CrossRef  Google Scholar 

  31. Sathya, P.D., Kayalvizhi, R.: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng. Appl. Artif. Intell. 24(4), 595–615 (2011)

    CrossRef  Google Scholar 

  32. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–165 (2004)

    CrossRef  Google Scholar 

  33. Srivastava, P.R., Varshney, A., Nama, P., Yang, X.S.: Software test effort estimation: a model based on cuckoo search. Int. J. Bio-Inspired Comput. 4(5), 278–285 (2012)

    CrossRef  Google Scholar 

  34. Tuba, M., Subotic, M., Stanarevic, N.: Performance of a modified cuckoo search algorithm for unconstrained optimization problems. WSEAS Trans. Syst. 11(2), 62–74 (2012)

    Google Scholar 

  35. Tuba, M., Jovanovic, R.: Improved ant colony optimization algorithm with pheromone correction strategy for the traveling salesman problem. Int. J. Comput. Commun. Control 8(3), 477–485 (2013)

    MathSciNet  Google Scholar 

  36. Tuba, M., Brajevic, I., Jovanovic, R.: Hybrid seeker optimization algorithm for global optimization. Appl. Math. Inf. Sci. 7(3), 867–875 (2013)

    CrossRef  MathSciNet  Google Scholar 

  37. Tuba, M.: Asymptotic behavior of the maximum entropy routing in computer networks. Entropy 15(1), 361–371 (2013)

    CrossRef  MathSciNet  Google Scholar 

  38. Yan, H.: Unified formulation of a class of optimal image thresholding techniques. Pattern Recogn. 29(12), 2025–2032 (1996)

    CrossRef  Google Scholar 

  39. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of the World Congress on Nature & Biologically Inspired, Computing, pp. 210–214 (2009)

    Google Scholar 

  40. Yang, X.S.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds) Research and Development in Intelligent Systems, vol. XXVI, pp. 209–218. Springer, London (2010)

    Google Scholar 

  41. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds) Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, pp. 169–178. Springer, Berlin (2009)

    Google Scholar 

  42. Yang, X.S.: Free lunch or no free lunch: that is not just a question? Int. J. Artif. Intell. Tools 21(3, SI) (2012)

    Google Scholar 

  43. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Frome (2010)

    Google Scholar 

  44. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optimisation 1(4), 330–343 (2010)

    CrossRef  MATH  Google Scholar 

  45. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    CrossRef  Google Scholar 

  46. Yang, X.S.: Review of meta-heuristics and generalised evolutionary walk algorithm. Int. J. Bio-Inspired Comput. 3(2), 77–84 (2011)

    CrossRef  Google Scholar 

  47. Yang, X.S.: Efficiency analysis of swarm intelligence and randomization techniques. J. Comput. Theor. Nanosci. 9(2), 189–198 (2012)

    CrossRef  Google Scholar 

  48. Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186 (2012)

    CrossRef  Google Scholar 

  49. Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29(2), 175–184 (2013)

    CrossRef  Google Scholar 

  50. Yen, J.C., Chang, F.J., Chang, S.: A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process. 4(3), 370–378 (1995)

    CrossRef  Google Scholar 

  51. Yin, P.Y.: Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 184(2), 503–513 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  52. Zhou, Y., Zheng, H., Luo, Q., Wu, J.: An improved Cuckoo search algorithm for solving planar graph coloring problem. Appl. Math. Inf. Sci. 7(2), 785–792 (2013)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgments

This reserach was supported by Ministry of Education and Science of Republic of Serbia, Grant III-44006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivona Brajevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brajevic, I., Tuba, M. (2014). Cuckoo Search and Firefly Algorithm Applied to Multilevel Image Thresholding. In: Yang, XS. (eds) Cuckoo Search and Firefly Algorithm. Studies in Computational Intelligence, vol 516. Springer, Cham. https://doi.org/10.1007/978-3-319-02141-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02141-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02140-9

  • Online ISBN: 978-3-319-02141-6

  • eBook Packages: EngineeringEngineering (R0)