Firefly Algorithm: A Brief Review of the Expanding Literature

  • Iztok Fister
  • Xin-She Yang
  • Dušan Fister
  • Iztok FisterJr.
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 516)

Abstract

Firefly algorithm (FA) was developed by Xin-She Yang in 2008 and it has become an important tool for solving the hardest optimization problems in almost all areas of optimization as well as engineering practice. The literature has expanded significantly in the last few years. Various FA variants have been developed to suit different applications. This chapter provides a brief review of this expanding and state-of-the-art literature on this dynamic and rapidly evolving domain of swarm intelligence.

Keywords

Firefly algorithm Discrete firefly algorithm Nature-inspired algorithm Scheduling Combinatorial optimization Engineering optimization 

References

  1. 1.
    Yang, X. S.: Firefly algorithm (chapter 8). Nature-Inspired Metaheuristic Algorithms, pp. 79–90, Luniver Press, Cambridge (2008)Google Scholar
  2. 2.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89(23–24), 2325–2336 (2011)CrossRefGoogle Scholar
  3. 3.
    Yang, X. S.: Firefly algorithms for multimodal optimization. In: Proceeding of the Conference on Stochastic Algorithms: Foundations and Applications, pp. 169–178. Springer (2009)Google Scholar
  4. 4.
    Yang, X. S.: Firefly algorithm, levy flights and global optimization. In: Watanabe, O., Zeugmann, T. (eds.) Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer, Berlin (2010)Google Scholar
  5. 5.
    Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Eng. Computers 29, 175–184 (2013)CrossRefGoogle Scholar
  6. 6.
    Fister, I, Fister, I.Jr., Yang, X.-S., Bret, J.: A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, http://dx.doi.org/10.1016/j.swevo.2013.06.001, (2013 In press)
  7. 7.
    Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  8. 8.
    Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3(1), 1–16 (2011)CrossRefGoogle Scholar
  9. 9.
    Yang, X.S.: Review of meta-heuristics and generalised evolutionary walk algorithm. Int. J. Bio-Inspired Comput. 3(2), 77–84 (2011)CrossRefGoogle Scholar
  10. 10.
    Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7, 232–237 (2010)CrossRefGoogle Scholar
  11. 11.
    Ong, H.C., Luleseged Tilahun, S.: Modified firefly algorithm. J. Appl. Math. 2012, 12 (2012)Google Scholar
  12. 12.
    Chandrasekaran, K., Simon, S.P., Padhy, N.P.: Binary real coded firefly algorithm for solving unit commitment problem. Inf. Sci. (2013) http://dx.doi.org/10.1016/j.ins.2013.06.022
  13. 13.
    Chandrasekaran, K., Simon, S.P.: Network and reliability constrained unit commitment problem using binary real coded firefly algorithm. Int. J. Electr. Power Energy Syst. 43(1), 921–932 (2012)CrossRefGoogle Scholar
  14. 14.
    Falcon, R., Almeida, M., Nayak, A.: Fault identification with binary adaptive fireflies in parallel and distributed systems. In: Evolutionary Computation (CEC), 2011 IEEE Congress on, pp. 1359–1366. IEEE (2011)Google Scholar
  15. 15.
    Farahani, S.M., Abshouri, A.A., Nasiri, B., Meybodi, M.R.: Some hybrid models to improve firefly algorithm performance. Int. J. Artif. Intel. 8(12), 97–117 (2012)Google Scholar
  16. 16.
    Palit, S., Sinha, S.N., Molla, M.A., Khanra, A., Kule, M.: A cryptanalytic attack on the knapsack cryptosystem using binary firefly algorithm. In: Computer and Communication Technology (ICCCT), 2011 2nd International Conference on, pp. 428–432. IEEE (2011)Google Scholar
  17. 17.
    Farahani, S.M., Abshouri, A.A., Nasiri, B., Meybodi, M.R.: A gaussian firefly algorithm. Int. J. Machine Learn. Comput. 1(5), 448–454 (2011)Google Scholar
  18. 18.
    Yang, X.S.: Metaheuristic optimization: algorithm analysis and open problems. In: Pardalos, P.M., Rebennack, S. (eds.) Experimental Algorithms, pp. 21–32. Lecture notes in computer science, volume 6630Springer Verlag, Berlin (2011)Google Scholar
  19. 19.
    Yang, X.S.: Efficiency analysis of swarm intelligence and randomization techniques. J. Comput. Theor. Nanosci. 9(2), 189–198 (2012)CrossRefGoogle Scholar
  20. 20.
    dos Santos Coelho, L., de Andrade Bernert, D. L., Mariani, V. C.: A chaotic firefly algorithm applied to reliability-redundancy optimization. In: Evolutionary Computation (CEC), 2011 IEEE Congress on, vol. 18, pp. 89–98, IEEE (2013)Google Scholar
  21. 21.
    Gandomi, A.H., Yang, X.-S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yang, X.-S.: Chaos-enhanced firefly algorithm with automatic parameter tuning. Int. J. Swarm Intell. Res. 2(4), 1–11 (2011)Google Scholar
  23. 23.
    Husselmann, A.V., Hawick, K.A.: Parallel parametric optimisation with firefly algorithms on graphical processing units. Technical, Report CSTN-141 (2012)Google Scholar
  24. 24.
    Subutic, M., Tuba, M., Stanarevic, N.: Parallelization of the firefly algorithm for unconstrained optimization problems. In: Latest Advances in Information Science and Applications, pp. 264–269 (2012)Google Scholar
  25. 25.
    Liu, G.: A multipopulation firefly algorithm for correlated data routing in underwater wireless sensor networks. Int. J. Distrib. Sens. Netw. (2013)Google Scholar
  26. 26.
    Adaniya, M.H.A.C., et al.: Anomaly detection using metaheuristic firefly harmonic clustering. J. Netw. 8(1), 82–91 (2013)Google Scholar
  27. 27.
    Adaniya, M.H.A.C, Lima, F.M., Rodrigues, J.J.P.C., Abrao, T., Proenca, M.L.: Anomaly detection using dsns and firefly harmonic clustering algorithm. In: Communications (ICC), 2012 IEEE International Conference on, pp. 1183–1187. IEEE (2012)Google Scholar
  28. 28.
    Fister, I., Yang, X.-S., Brest, J., Fister, I.Jr.: Modified firefly algoirthm using quaternion representation. Expert Systems with Applications, http://dx.doi.org/10.1016/j.eswa.2013.06.070, (2013)
  29. 29.
    Yang, X. S., Deb, S.: Eagle strategy using levy walk and firefly algorithms for stochastic optimization. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 101–111 (2010)Google Scholar
  30. 30.
    Luthra, J., Pal, S.K.: A hybrid firefly algorithm using genetic operators for the cryptanalysis of a monoalphabetic substitution cipher. In: Information and Communication Technologies (WICT), 2011 World Congress on, pp. 202–206. IEEE (2011)Google Scholar
  31. 31.
    Abdullah, A., Deris, S., Mohamad, M., Hashim, S.: A new hybrid firefly algorithm for complex and nonlinear problem. In: Omatu, S., et al. (eds.) Distributed Computing and, Artificial Intelligence, vol. 151, pp. 673–680. Springer, Berlin (2012)Google Scholar
  32. 32.
    Abdullah, A., Deris, S., Anwar, S., Arjunan, S.N.V.: An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters. PloS one. 8(3), e56310 (2013)Google Scholar
  33. 33.
    Fister, I.Jr., Yang, X.-S., Fister, I., Brest, J.: Memetic firefly algorithm for combinatorial optimization. pp. 75–86. Jožef Stefan Institute (2012)Google Scholar
  34. 34.
    Srivastava, A., Chakrabarti, S., Das, S., Ghosh, S., Jayaraman, V.K.: Hybrid firefly based simultaneous gene selection and cancer classification using support vector machines and random forests. In; Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), pp. 485–494. Springer (2013)Google Scholar
  35. 35.
    Hassanzadeh, T., Faez, K., Seyfi, G.: A speech recognition system based on structure equivalent fuzzy neural network trained by firefly algorithm. In: Biomedical Engineering (ICoBE), 2012 International Conference on, pp. 63–67. IEEE (2012)Google Scholar
  36. 36.
    Nandy, S., Sarkar, P.P., Das, A.: Analysis of a nature inspired firefly algorithm based back-propagation neural network training. arXiv, preprint arXiv:1206.5360 (2012)Google Scholar
  37. 37.
    Ranjan Senapati, M., Dash, P.K.: Local linear wavelet neural network based breast tumor classification using firefly algorithm. Neural Comput. Appl. 30, p p. 1–8 (2013)Google Scholar
  38. 38.
    Hassanzadeh, T., Meybodi, M.R.: A new hybrid algorithm based on firefly algorithm and cellular learning automata. In: 20th Iranian Conference on Electrical Engineering, pp. 628–633. IEEE (2012)Google Scholar
  39. 39.
    Aruchamy, R., Vasantha, K.D.D.: A comparative performance study on hybrid swarm model for micro array data. Int. J. Comput. Appl. 30(6), 10–14 (2011)Google Scholar
  40. 40.
    Vahedi Nouri, B., Fattahi, P., Ramezanian, R.: Hybrid firefly-simulated annealing algorithm for the flow shop problem with learning effects and flexible maintenance activities. Int. J. Prod. Res. (ahead-of-print), 1–15 (2013)Google Scholar
  41. 41.
    Luleseged Tilahun, S., Ong, H.C.: Vector optimisation using fuzzy preference in evolutionary strategy based firefly algorithm. Int. J. Oper. Res. 16(1), 81–95 (2013)Google Scholar
  42. 42.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  43. 43.
    Papadimitriou, H., Steglitz, I.: Copmbinatorial Optimization: Algorithms and Complexity. Dover Publications, Inc., Mineola, NY (1998)Google Scholar
  44. 44.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer-Verlag, Berlin (2003)CrossRefMATHGoogle Scholar
  45. 45.
    Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments. Springer Verlag, Berlin (2004)CrossRefMATHGoogle Scholar
  46. 46.
    Poursalehi, N., Zolfaghari, A., Minuchehr, A., Moghaddam, H.K.: Continuous firefly algorithm applied to pwr core pattern enhancement. Nucl. Eng. Des. 258, 107–115 (2013)CrossRefGoogle Scholar
  47. 47.
    Durkota, K.: Implementation of a discrete firefly algorithm for the qap problem within the sage framework. Czech Technical University, Prague, Master’s thesis (2009)Google Scholar
  48. 48.
    Hönig, U.: A firefly algorithm-based approach for scheduling task graphs in homogeneous systems. In: Informatics, pp. 24–33. ACTA Press (2010)Google Scholar
  49. 49.
    G. Jati. Evolutionary discrete firefly algorithm for travelling salesman problem. In: Adaptive and Intelligent Systems, pp. 393–403 (2011)Google Scholar
  50. 50.
    Khadwilard, A., Chansombat, S., Thepphakorn, T., Thapatsuwan, P., Chainate, W., Pongcharoen, P.: Application of firefly algorithm and its parameter setting for job shop scheduling. In: 1st Symposium on Hands-On Research and, Development, pp. 1–10 (2011)Google Scholar
  51. 51.
    Kwiecień, J., Filipowicz, B.: Firefly algorithm in optimization of queueing systems. Tech. Sci. 60(2), 363–368 (2012)Google Scholar
  52. 52.
    Liu, C., Gao, Z., Zhao, W.: A new path planning method based on firefly algorithm. In: Computational Sciences and Optimization (CSO), 2012 Fifth International Joint Conference on, pp. 775–778. IEEE (2012)Google Scholar
  53. 53.
    Marichelvam, M.K., Prabaharan, T., Yang, X.-S.: A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Trans. Evol. Comput. TEVC-00124-2012 (2012)Google Scholar
  54. 54.
    Sayadi, M.K., Ramezanian, R., Ghaffari-Nasab, N.: A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. Int. J. Industrial Eng. Comput. 1(1), 1–10 (2010)CrossRefGoogle Scholar
  55. 55.
    Wang, G., Guo, L., Duan, H., Liu, L., Wang, H.: A modified firefly algorithm for ucav path planning. Int. J. Hybrid Inf. Technol. 5(3), 123–144 (2012)Google Scholar
  56. 56.
    Gomes, H.M.: A firefly metaheuristic structural size and shape optimisation with natural frequency constraints. Int. J. Metaheuristics 2(1), 38–55 (2012)CrossRefGoogle Scholar
  57. 57.
    Łukasik, S., Żak, S.: Firefly algorithm for continuous constrained optimization tasks. In: Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, pp. 97–106. Springer, 2009.Google Scholar
  58. 58.
    Abedinia, O., Amjady, N., Naderi, M.S.: Multi-objective environmental/economic dispatch using firefly technique. In: Environment and Electrical Engineering (EEEIC), 2012 11th International Conference on, pp. 461–466. IEEE (2012)Google Scholar
  59. 59.
    Amiri, B.k, Hossain, L., Crawford, J.W., Wigand, R.T.: Community detection in complex networks: Multi-objective enhanced firefly algorithm. Knowl.-Based Syst. 46, 1–11 (2013)Google Scholar
  60. 60.
    dos Santos Coelho, L., Bora, L.C.: Felipe Schauenburg, and Piergiorgio Alotto. A multiobjective firefly approach using beta probability distribution for electromagnetic optimization problems. IEEE Trans. Magn. 49(5), 2085 (2013)Google Scholar
  61. 61.
    Poursalehi, N., Zolfaghari, A., Minuchehr, A.: Multi-objective loading pattern enhancement of pwr based on the discrete firefly algorithm. Ann. Nucl. Energy 57, 151–163 (2013)CrossRefGoogle Scholar
  62. 62.
    Niknam, T., Azizipanah-Abarghooee, R., Roosta, A., Amiri, B.: A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch. Energy 42(1), 530–545. Elsevier (2012)Google Scholar
  63. 63.
    Santander-Jiménez, S., Vega-Rodríguez, M.A.: A multiobjective proposal based on the firefly algorithm for inferring phylogenies. In: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, pp. 141–152. Springer (2013)Google Scholar
  64. 64.
    Miguel, L.F.F.: Rafael Holdorf Lopez, and Letícia Fleck Fadel Miguel. Multimodal size, shape, and topology optimisation of truss structures using the firefly algorithm. Adv. Eng. Softw. 56, 23–37 (2013)Google Scholar
  65. 65.
    Abshouri, A.A., Meybodi, M.R., Bakhtiary, A.: New firefly algorithm based on multi swarm & learning automata in dynamic environments. In: IEEE proceedings, pp. 73–77 (2011)Google Scholar
  66. 66.
    Chai-Ead, N., Aungkulanon, P., Luangpaiboon, P.: Bees and firefly algorithms for noisy non-linear optimization problems. In: Proceedings of the International Multi Conference of Engineering and Computer Scientists 2, 1–6 (2011)Google Scholar
  67. 67.
    Farahani, S.M., Nasiri, B., Meybodi. M.R.: A multiswarm based firefly algorithm in dynamic environments. In: Third International Conference on Signal Processing Systems (ICSPS2011), vol. 3, pp. 68–72 (2011)Google Scholar
  68. 68.
    Nasiri, B., Meybodi, M.R.: Speciation based firefly algorithm for optimization in dynamic environments. Int. J. Artif. Intell. 8(12), 118–132 (2012)Google Scholar
  69. 69.
    Mustafa, M.W., Azmi, A., Aliman, O., Abdul Rahim, S.R.: Optimal allocation and sizing of distributed generation in distribution system via firefly algorithm. In: Power Engineering and Optimization Conference (PEDCO) Melaka, Malaysia, 2012 IEEE International, pp. 84–89. IEEE (2012)Google Scholar
  70. 70.
    Banati, H., Bajaj, M.: Firefly based feature selection approach. IJCSI Int. J. Comput. Sci. Issues 8(4), 473–480 (2011)Google Scholar
  71. 71.
    Horng, M.H., Lee, Y.X., Lee, M.C., Liou, R.J.: Firefly meta-heuristic algorithm for training the radial basis function network for data classification and disease diagnosis. In: Parpinelli, R., Lopes, H.S. (eds.) Theory and New Applications of Swarm Intelligence, pp. 1–19. InTech, Rijeka (2012)Google Scholar
  72. 72.
    Senthilnath, J.: SN Omkar, and V. Mani. Clustering using firefly algorithm: Performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)Google Scholar
  73. 73.
    Abedinia, O., Amjady, N., Kiani, K., Shayanfar, H.A.: Fuzzy pid based on firefly algorithm: Load frequency control in deregulated environment. In: The 2012 International Conference on Bioinformatics and Computational Biology, pp. 1–7 (2012)Google Scholar
  74. 74.
    Apostolopoulos, T., Vlachos, A.: Application of the firefly algorithm for solving the economic emissions load dispatch problem. In: International Journal of Combinatorics, 2011, 23 p., (2011)Google Scholar
  75. 75.
    Aungkulanon, P., Chai-Ead, N., Luangpaiboon, P.: Simulated manufacturing process improvement via particle swarm optimisation and firefly algorithms. In Proceedings of the International MultiConference of Engineers and Computer Scientists 2, 1–6 (2011)Google Scholar
  76. 76.
    Chandrasekaran, K., Simon, S.P.: Optimal deviation based firefly algorithm tuned fuzzy design for multi-objective ucp. IEEE Trans. Power Syst. 28(1), 460–471 (2013)Google Scholar
  77. 77.
    handrasekaran, K., Simon, S.P.: Demand response scheduling in scuc problem for solar integrated thermal system using firefly algorithm. In: Renewable Power Generation (RPG 2011), IET Conference on, pp. 1–8. IET (2011)Google Scholar
  78. 78.
    Chatterjee, A., Mahanti, G.K., Chatterjee, A.: Design of a fully digital controlled reconfigurable switched beam concentric ring array antenna using firefly and particle swarm optimization algorithm. Prog. Electromagnet Res. B 36, 113–131. EMW Publishing (2012)Google Scholar
  79. 79.
    dos Santos Coelho, L., Mariani, V.C.: Improved firefly algorithm approach for optimal chiller loading for energy conservation. Energy Buildings 59, 1–320 (2012)Google Scholar
  80. 80.
    Dekhici, L., Borne, P., Khaled, B., et al.: Firefly algorithm for economic power dispatching with pollutants emission. Informatica Economică 16(2), 45–57 (2012)Google Scholar
  81. 81.
    Dutta, R., Ganguli, R., Mani, V.: Exploring isospectral spring-mass systems with firefly algorithm. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, vol. 467, pp. 3222–3240. The Royal Society (2011)Google Scholar
  82. 82.
    Hu, H.: Fa-based optimal strategy of trains energy saving with energy materials. Adv. Mater. Res. 485, 93–96 (2012)CrossRefGoogle Scholar
  83. 83.
    Kazemzadeh, A.S.: Optimum design of structures using an improved firefly algorithm. Int. J. Optim. Civ. Eng. 2(1), 327–340 (2011)Google Scholar
  84. 84.
    Mauder, T., Sandera, C., Stetina, J., Seda, M.: Optimization of the quality of continuously cast steel slabs using the firefly algorithm. Materiali in tehnologije 45(4), 347–350 (2011)Google Scholar
  85. 85.
    Mohammadi, s., Mozafari, B., Solimani, S., Niknam, T.: An adaptive modified firefly optimisation algorithm based on hong’s point estimate method to optimal operation management in a microgrid with consideration of uncertainties. Energy (2013)Google Scholar
  86. 86.
    Bharathi Raja, S., Srinivas Pramod, C.V., Vamshee Krishna, K., Ragunathan, A., Vinesh, S., Optimization of electrical discharge machining parameters on hardened die steel using firefly algorithm. Engineering with Computers 36, 1–9 (2013)Google Scholar
  87. 87.
    Rampriya, B., Mahadevan, K., Kannan, S.: Unit commitment in deregulated power system using Lagrangian firefly algorithm. In: Communication Control and Computing Technologies (ICCCCT), 2010 IEEE International Conference on, pp. 389–393. IEEE (2010)Google Scholar
  88. 88.
    Roeva, O.: Optimization of e. coli cultivation model parameters using firefly algorithm. Int. J. Bioautomation 16, 23–32 (2012)Google Scholar
  89. 89.
    Roeva, O., Slavov, T.: Firefly algorithm tuning of pid controller for glucose concentration control during e. coli fed-batch cultivation process. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 455–462. IEEE (2012)Google Scholar
  90. 90.
    Rubio-Largo, Á., Vega-Rodríguez, M. A.: Routing low-speed traffic requests onto high-speed lightpaths by using a multiobjective firefly algorithm. In Applications of Evolutionary Computation, p. 12–21. Springer (2013)Google Scholar
  91. 91.
    Chandra Saikia, L., Kant Sahu, S.: Automatic generation control of a combined cycle gas turbine plant with classical controllers using firefly algorithm. Int. J. Electr. Power Energy Syst, 53, 27–33 (2013)Google Scholar
  92. 92.
    Sanaei, P., Akbari, R., Zeighami, V., Shams, S.: Using firefly algorithm to solve resource constrained project scheduling problem. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), pp. 417–428. Springer (2013)Google Scholar
  93. 93.
    Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186 (2011)CrossRefGoogle Scholar
  94. 94.
    Yazdani, A., Jayabarathi, T., Ramesh, V., Raghunathan, T.: Combined heat and power economic dispatch problem using firefly algorithm. Front. Energy 7, 1–7 (2013)Google Scholar
  95. 95.
    Hassanzadeh, T., Vojodi, H., Mahmoudi, F.: Non-linear grayscale image enhancement based on firefly algorithm. In: Swarm, Evolutionary, and Memetic Computing, pp. 174–181. Springer (2011)Google Scholar
  96. 96.
    Hassanzadeh, T., Vojodi, H., Moghadam, A.M.E.: An image segmentation approach based on maximum variance intra-cluster method and firefly algorithm. In: Natural Computation (ICNC), 2011 Seventh International Conference on, vol. 3, pp. 1817–1821. IEEE (2011)Google Scholar
  97. 97.
    Horng, M.H.: Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39(1), 1078–1091 (2012)MathSciNetCrossRefGoogle Scholar
  98. 98.
    Horng, M.H., Jiang, T.W.: The codebook design of image vector quantization based on the firefly algorithm. In: Computational Collective Intelligence. Technologies and Applications, pp. 438–447 (2010)Google Scholar
  99. 99.
    Horng, M.H., Jiang, T.W.: Multilevel image thresholding selection based on the firefly algorithm. In: Ubiquitous Intelligence and Computing and 7th International Conference on Autonomic and Trusted Computing (UIC/ATC), 2010 7th International Conference on, pp. 58–63. IEEE (2010)Google Scholar
  100. 100.
    Horng, M.H., Liou, R.J.: Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst. Appl. 38(12), 14805–14811. Elsevier (2011)Google Scholar
  101. 101.
    Mohd Noor, M.H., Ahmad, A.R., Hussain, Z., Ahmad, K.A., Ainihayati, A.R.: Multilevel thresholding of gel electrophoresis images using firefly algorithm. In: Control System, Computing and Engineering (ICCSCE), 2011 IEEE International Conference on, pp. 18–21. IEEE (2011)Google Scholar
  102. 102.
    Xiaogang, D., Jianwu, D., Yangping, W., Xinguo, L., Sha, L.: An algorithm multi-resolution medical image registration based on firefly algorithm and powell. In: Intelligent System Design and Engineering Applications (ISDEA), 2013 Third International Conference, pp. 274–277. IEEE (2013)Google Scholar
  103. 103.
    Zhang, Y., Wu, L.: A novel method for rigid image registration based on firefly algorithm. Int. J. Res. Rev. Soft Intell. Comput. (IJRRSIC) 2(2), 141–146 (2012)Google Scholar
  104. 104.
    Basu, B., Mahanti, G.K.: Firefly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Prog. Electromagnet Res. B 32, 169–190 (2011)CrossRefGoogle Scholar
  105. 105.
    Basu, B., Mahanti, G.K.: Thinning of concentric two-ring circular array antenna using fire fly algorithm. Scientia Iranica, 19(6), 1802–1809 (2012)Google Scholar
  106. 106.
    Chatterjee, A., Mahanti, G.K.: Minimization in variations of different parameters in different \(\varphi \) planes of a small-size concentric ring array antenna using firefly algorithm. Ann. Telecommun. 68, 1–8 (2012)Google Scholar
  107. 107.
    Sharaqa, A., Dib, N.: Circular antenna array synthesis using firefly algorithm. Int. J. RF Microwave Comput. Aided Eng. Article in press, Wiley Online Library (2013)Google Scholar
  108. 108.
    Zaman, M.A., Matin, A., et al.: Nonuniformly spaced linear antenna array design using firefly algorithm. Int. J. Microwave Sci. Technol. 2012, 8 (2012)Google Scholar
  109. 109.
    Banati, H., Bajaj, M.: Promoting products online using firefly algorithm. In: Intelligent Systems Design and Applications (ISDA), 2012 12th International Conference on, pp. 580–585, IEEE (2012)Google Scholar
  110. 110.
    Giannakouris, G., Vassiliadis, V., Dounias, G.: Experimental study on a hybrid nature-inspired algorithm for financial portfolio optimization. In: Artificial Intelligence: Theories, Models and Applications, pp. 101–111 (2010)Google Scholar
  111. 111.
    Salomie, I., Chifu, V.R., Pop, C.B., Suciu, R.: Firefly-based business process optimization. pp. 49–56 (2012), cited By (since 1996)Google Scholar
  112. 112.
    Yang, X. S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: Networked Digital Technologies, pp. 53–66 (2011)Google Scholar
  113. 113.
    Jakimovski, B., Meyer, B., Maehle, E.: Firefly flashing synchronization as inspiration for self-synchronization of walking robot gait patterns using a decentralized robot control architecture. Archit. Comput. Sys. ARCS 2010, 61–72 (2010)Google Scholar
  114. 114.
    Mardlijah, A.J., Widodo, B., Santoso, A.: A new combination method of firefly algorithm and t2fsmc for mobile inverted pendulum robot. J. Theor. Appl. Inf. Technol. 47(2):824–831 (2013)Google Scholar
  115. 115.
    Severin, S., Rossmann, J.: A comparison of different metaheuristic algorithms for optimizing blended ptp movements for industrial robots. In: Intelligent Robotics and Applications, pp. 321–330 (2012)Google Scholar
  116. 116.
    Gholizadeh, S., Barati, H.: A comparative study of three metaheuristics for optimum design of trusses. Int. J. Optim. Civ. Eng. 3, 423–441 (2012)Google Scholar
  117. 117.
    Talatahari, S., Gandomi, A.H., Yun, G.J.: Optimum design of tower structures using firefly algorithm. The Structural Design of Tall and Special Buildings (2012)Google Scholar
  118. 118.
    Fateen, S.E., Bonilla-Petriciolet, A., Rangaiah, G.P.: Evaluation of covariance matrix adaptation evolution strategy, shuffled complex evolution and firefly algorithms for phase stability, phase equilibrium and chemical equilibrium problems. Chem. Eng. Res. Des. 90(12), 2051–2071 (2012)CrossRefGoogle Scholar
  119. 119.
    Zhang, Y., Wang, S.: Solving two-dimensional hp model by firefly algorithm and simplified energy function. Mathematical Problems in Engineering. vol. 2013, 398141, 9 p (2013). doi: 10.1155/2013/398141
  120. 120.
    Pop, C.B., Chifu, V.R., Salomie, I., Baico, R.B., Dinsoreanu, M., Copil, G.: A hybrid firefly-inspired approach for optimal semantic web service composition. Scal. Comput. Pract. Exp. vol. 12(3), pp. 363–369 (2011)Google Scholar
  121. 121.
    dos Santos, A.F., de Campos Velho, H.F., Luz, E.F.P., Freitas, S.R., Grell, G., Gan, M. A.: A Firefly optimization to determine the precipitation field on South, America. Inverse Prob. Sci. Eng. 21, 417–428 (2013)Google Scholar
  122. 122.
    Breza, M., McCann, J.A.: Lessons in implementing bio-inspired algorithms on wireless sensor networks. In Adaptive Hardware and Systems, 2008. AHS’08. NASA/ESA Conference on, pp. 271–276. IEEE (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Iztok Fister
    • 1
  • Xin-She Yang
    • 2
  • Dušan Fister
    • 1
  • Iztok FisterJr.
    • 1
  1. 1.Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia
  2. 2.School of Science and TechnologyMiddlesex UniversityNorth LondonUK

Personalised recommendations