Advertisement

Intelligent Firefly Algorithm for Global Optimization

  • Seif-Eddeen K. Fateen
  • Adrián Bonilla-Petriciolet
Part of the Studies in Computational Intelligence book series (SCI, volume 516)

Abstract

Intelligent firefly algorithm (IFA) is a novel global optimization algorithm that aims to improve the performance of the firefly algorithm (FA), which was inspired by the flashing communication signals among firefly swarms. This chapter introduces the IFA modification and evaluates its performance in comparison with the original algorithm in twenty multi-dimensional benchmark problems. The results of those numerical experiments show that IFA outperformed FA in terms of reliability and effectiveness in all tested benchmark problems. In some cases, the global minimum could not have been successfully identified via the firefly algorithm, except with the proposed modification for FA.

Keywords

Global optimization Nature-inspired methods Intelligent firefly algorithm. 

References

  1. 1.
    Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45, 3–38 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11, 5508–5518 (2011)CrossRefGoogle Scholar
  3. 3.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comp. 8, 687–697 (2008)CrossRefGoogle Scholar
  4. 4.
    Li, G., Niu, P., Xiao, X.: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl. Soft Comp. 12, 320–332 (2012)CrossRefGoogle Scholar
  5. 5.
    Omkar, S.N., Senthilnath, J., Khandelwal, R., Narayana Naik, G., Gopalakrishnan, S.: Artificial bee colony (ABC) for multi-objective design optimization of composite structures. Appl. Soft Comp. 11, 489–499 (2011)CrossRefGoogle Scholar
  6. 6.
    Marinaki, M., Marinakis, Y., Zopounidis, C.: Honey bees mating optimization algorithm for financial classification problems. Appl. Soft Comp. 10, 806–812 (2010)CrossRefGoogle Scholar
  7. 7.
    Chen, H., Zhu, Y., Hu, K.: Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning. Appl. Soft Comp. 10, 539–547 (2010)CrossRefGoogle Scholar
  8. 8.
    Yang, X.S.: Firefly algorithm. Nature-Inspired Metaheuristic AlgorithmsLuniver Press, UK (2008)Google Scholar
  9. 9.
    Sayadi, M.K., Ramezanian, R., Ghaffari-Nasab, N.: A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. Int. J. Ind. Eng. Comput. 1, 1–10 (2010)CrossRefGoogle Scholar
  10. 10.
    Apostolopoulos, T., Vlachos, A.: Application of the firefly algorithm for solving the economic emissions load dispatch problem. Int. J. Comb. ID 523806, 1–23 (2011)MathSciNetGoogle Scholar
  11. 11.
    B. Rampriya, K. Mahadevan, and S. Kannan, Unit commitment in deregulated power system using Lagrangian firefly algorithm, In: International Conference on Communication Control and Computing Technologies, pp. 389–393, 2010.Google Scholar
  12. 12.
    dos Santos Coelho, L., de Andrade Bernert, D.L., Mariani, V.C.: A chaotic firefly algorithm applied to reliability-redundancy optimization. In: IEEE Congr. Evol. Comput. 2011, 517–521 (2011)Google Scholar
  13. 13.
    Giannakouris, G., Vassiliadis, V., and Dounias, G. Experimental Study on a Hybrid Nature-Inspired Algorithm for Financial Portfolio Optimizatio. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C. and Vouros, G. (eds.) Artificial Intelligence: Theories, Models and Applications, vol. 6040, pp. 101–111. Springer, Berlin / Heidelberg, (2010)Google Scholar
  14. 14.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comp. Struct. 89, 2325–2336 (2011)CrossRefGoogle Scholar
  15. 15.
    Yang, X.S., Sadat Hosseini, S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comp. 12, 1180–1186 (2012)CrossRefGoogle Scholar
  16. 16.
    Yang, X.S.: Review of meta-heuristics and generalised evolutionary walk algorithm. Int. J. Bio-Insp. Comput. 3, 77–84 (2011)CrossRefGoogle Scholar
  17. 17.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Seif-Eddeen K. Fateen
    • 1
  • Adrián Bonilla-Petriciolet
    • 2
  1. 1.Department of Chemical EngineeringCairo UniversityGizaEgypt
  2. 2.Department of Chemical EngineeringInstituto Tecnológico de AguascalientesAguascalientesMéxico

Personalised recommendations