Cuckoo Search and Firefly Algorithm: Overview and Analysis

  • Xin-She Yang
Part of the Studies in Computational Intelligence book series (SCI, volume 516)


Firefly algorithm (FA) was developed by Xin-She Yang in 2008, while cuckoo search (CS) was developed by Xin-She Yang and Suash Deb in 2009. Both algorithms have been found to be very efficient in solving global optimization problems. This chapter provides an overview of both cuckoo search and firefly algorithm as well as their latest developments and applications. We analyze these algorithms and gain insight into their search mechanisms and find out why they are efficient. We also discuss the essence of algorithms and its link to self-organizing systems. In addition, we also discuss important issues such as parameter tuning and parameter control, and provide some topics for further research.


Algorithm Cuckoo search Firefly algorithm Metaheuristic Optimization Self-organization 


  1. 1.
    Abshouri, A.A., Meybodi, M.R., Bakhtiary, A.: New firefly algorithm based on multiswarm and learning automata in dynamic environments. Third international conference on signal processing systems (ICSPS2011), pp. 73–77. Yantai, China, 27–28 Aug 2011Google Scholar
  2. 2.
    Azad, S.K., Azad, S.K.: Optimum design of structures using an improved firefly algorithm. Int. J. Optim. Civ. Eng. 1(2), 327–340 (2011)Google Scholar
  3. 3.
    Apostolopoulos, T., Vlachos, A.: Application of the firefly algorithm for solving the economic emissions load dispatch problem. Int. J. Comb. 2011, (2011). Article ID 523806.
  4. 4.
    Ashby, W.R.: Princinples of the self-organizing sysem. In: Von Foerster, H., Zopf Jr, G.W. (eds.) Pricinples of Self-Organization: Transactions of the University of Illinois Symposium, pp. 255–278. Pergamon Press, London, UK (1962)Google Scholar
  5. 5.
    Banati, H., Bajaj, M.: Firefly based feature selection approach. Int. J. Comput. Sci. Issues 8(2), 473–480 (2011)Google Scholar
  6. 6.
    Bansal, J.C., Deep, K.: Optimisation of directional overcurrent relay times by particle swarm optimisation. In: Swarm intelligence symposium (SIS 2008), pp. 1–7. IEEE Publication (2008)Google Scholar
  7. 7.
    Basu, B., Mahanti, G.K.: Firefly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Prog. Electromagn. Res. B 32, 169–190 (2011)CrossRefGoogle Scholar
  8. 8.
    Bénichou, O., Loverdo, C., Moreau, M., Voituriez, R.: Two-dimensional intermittent search processes: An alternative to Lévy flight strategies. Phys. Rev. E74, 020102(R) (2006)Google Scholar
  9. 9.
    Bhargava, V., Fateen, S.E.K., Bonilla-Petriciolet, A.: Cuckoo search: a new nature-inspired optimization method for phase equilibrium calculations. Fluid Phase Equilib. 337, 191–200 (2013)CrossRefGoogle Scholar
  10. 10.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: overview and conceptural comparision. ACM Comput. Surv. 35, 268–308 (2003)CrossRefGoogle Scholar
  11. 11.
    Bulatović, R.R., Bordević, S.R., Dordević, V.S.: Cuckoo search algorithm: a metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell linkage. Mech. Mach. Theory 61, 1–13 (2013)CrossRefGoogle Scholar
  12. 12.
    Chandrasekaran, K., Simon, S.P.: Multi-objective scheduling problem: hybrid appraoch using fuzzy assisted cuckoo search algorithm. Swarm Evol. Comput. 5(1), 1–16 (2012)CrossRefGoogle Scholar
  13. 13.
    Chatterjee, A., Mahanti, G.K., Chatterjee, A.: Design of a fully digital controlled reconfigurable switched beam conconcentric ring array antenna using firefly and particle swarm optimisation algorithm. Prog. Elelectromagn. Res. B 36, 113–131 (2012)CrossRefGoogle Scholar
  14. 14.
    Chifu, V.R., Pop, C.B., Salomie, I., Suia, D.S., Niculici, A.N.: Optimizing the semantic web service composition process using cuckoo search. In: Intelligent distributed computing V, studies in computational intelligence vol. 382, pp. 93–102 (2012)Google Scholar
  15. 15.
    Choudhary, K., Purohit, G.N.: A new testing approach using cuckoo search to achieve multi-objective genetic algorithm. J. Comput. textbf3(4), 117–119 (2011)Google Scholar
  16. 16.
    Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  17. 17.
    Civicioglu, P., Besdok, E.: A conception comparison of the cuckoo search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif. Intell. Rev. (2011). doi: 10.1007/s10462-011-92760
  18. 18.
    dos Santos Coelho, L., de Andrade Bernert, D.L., Mariani, V.C.: A chaotic firefly algorithm applied to reliability-redundancy optimisation. In: 2011 IEEE Congress on evolutionary computation (CEC’11), pp. 517–521 (2011)Google Scholar
  19. 19.
    Dhivya, M., Sundarambal, M., Anand, L.N.: Energy efficient computation of data fusion in wireless sensor networks using cuckoo based particle approach (CBPA). Int. J. Commun. Netw. Syst. Sci. 4, 249–255 (2011)Google Scholar
  20. 20.
    Dhivya, M., Sundarambal, M.: Cuckoo search for data gathering in wireless sensor networks. Int. J. Mobile Commun. 9, 642–656 (2011)CrossRefGoogle Scholar
  21. 21.
    Durgun, I., Yildiz, A.R.: Structural design optimization of vehicle components using cuckoo search algorithm. Mater. Test. 3, 185–188 (2012)CrossRefGoogle Scholar
  22. 22.
    Durkota, K.: Implementation of a discrete firefly algorithm for the QAP problem within the sage framework. B.Sc. thesis, Czech Technical University (2011)Google Scholar
  23. 23.
    Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1, 19–31 (2011)CrossRefGoogle Scholar
  24. 24.
    Farahani, S.M., Abshouri, A.A., Nasiri, B., Meybodi, M.R.: A Gaussian firefly algorithm. Int. J. Mach. Learn. Comput. 1(5), 448–453 (2011)CrossRefGoogle Scholar
  25. 25.
    Farahani, S.M., Nasiri, B., Meybodi, M.R.: A multiswarm based firefly algorithm in dynamic environments. In: Third international conference on signal processing systems (ICSPS2011), pp. 68–72. Yantai, China, 27–28 Aug 2011Google Scholar
  26. 26.
    Fister Jr, I., Fister, I., Brest, J., Yang, X.S.: Memetic firefly algorithm for combinatorial optimisation. In: Filipič, B., Šilc, J. (eds.) Bioinspired Optimisation Methods and Their Applications (BIOMA2012), pp. 75–86. Bohinj, Slovenia, 24–25 May 2012Google Scholar
  27. 27.
    Fister, I., Fister Jr., I., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. Swarm Evol. Comput. 6 (in press) (2013).
  28. 28.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a meteheuristic approach to solve structural optimization problems. Engineering with Computers 29(1), 17–35 (2013). doi: 10.1007/s00366-011-0241-y MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Deb, S.: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput. Math. Appl. 63(1), 191–200 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Giannakouris, G., Vassiliadis, V., Dounias, G.: Experimental study on a hybrid nature-inspired algorithm for financial portfolio optimisation, SETN 2010. Lecture Notes in Artificial Intelligence (LNAI 6040), pp. 101–111 (2010)Google Scholar
  31. 31.
    Hassanzadeh, T., Vojodi, H., Moghadam, A.M.E.: An image segmentation approach based on maximum variance intra-cluster method and firefly algorithm. In: Proceedings of 7th International Conference on Natural Computation (ICNC2011), pp. 1817–1821 (2011)Google Scholar
  32. 32.
    Horng, M.-H., Lee, Y.-X., Lee, M.-C., Liou, R.-J.: Firefly metaheuristic algorithm for training the radial basis function network for data classification and disease diagnosis. In: Parpinelli, R., Lopes, H.S. (eds.) Theory and New Applications of Swarm Intelligence, pp. 115–132 (2012)Google Scholar
  33. 33.
    Horng, M.-H.: Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl. 39, 1078–1091 (2012)CrossRefGoogle Scholar
  34. 34.
    Horng, M.-H., Liou, R.-J.: Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst. Appl. 38, 14805–14811 (2011)CrossRefGoogle Scholar
  35. 35.
    Jati, G.K., Suyanto, S.: Evolutionary discrete firefly algorithm for travelling salesman problem, ICAIS2011. Lecture Notes in Artificial Intelligence (LNAI 6943), pp. 393–403 (2011)Google Scholar
  36. 36.
    Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102, 8–16 (2007)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Kaveh, A., Bakhshpoori, T.: Optimum design of steel frames using cuckoo search algorithm with Levy flights. Struct. Des. Tall. Spec. Build. 21, (online first) (2011).
  38. 38.
    Keller, E.F.: Organisms, machines, and thunderstorms: a history of self-organization, part two. Complexity, emergenece, and stable attractors. Hist. Stud. Nat. Sci. 39(1), 1–31 (2009)Google Scholar
  39. 39.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization., In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. Piscataway, NJ (1995)Google Scholar
  40. 40.
    Koziel, S., Yang, X.S.: Computational Optimization, Methods and Algorithms. Springer, Germany (2011)CrossRefMATHGoogle Scholar
  41. 41.
    Kumar A., Chakarverty, S.: Design optimization for reliable embedded system using Cuckoo Search. In: Proceedings of 3rd International Conference on Electronics Computer Technology (ICECT2011), pp. 564–568 (2011)Google Scholar
  42. 42.
    Layeb, A.: A novel quantum-inspired cuckoo search for Knapsack problems. Int. J. Bio-inspired Comput. 3(5), 297–305 (2011)Google Scholar
  43. 43.
    Moravej, Z., Akhlaghi, A.: A novel approach based on cuckoo search for DG allocation in distribution network. Electr Power Energy Syst. 44, 672–679 (2013)CrossRefGoogle Scholar
  44. 44.
    Nandy, S., Sarkar, P.P., Das, A.: Analysis of nature-inspired firefly algorithm based back-propagation neural network training. Int. J. Comput. Appl. 43(22), 8–16 (2012)Google Scholar
  45. 45.
    Noghrehabadi, A., Ghalambaz, M., Vosough, A.: A hybrid power series—Cuckoo search optimization algorithm to electrostatic deflection of micro fixed-fixed actuators. Int. J. Multi. Sci. Eng. 2(4), 22–26 (2011)Google Scholar
  46. 46.
    Palit, S., Sinha, S., Molla, M., Khanra, A., Kule, M.: A cryptanalytic attack on the knapsack cryptosystem using binary Firefly algorithm. In: 2nd International Conference on Computer and Communication Technology (ICCCT), pp. 428–432. India, 15–17 Sept 2011Google Scholar
  47. 47.
    Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3, 1–16 (2011)CrossRefGoogle Scholar
  48. 48.
    Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Comput. Phys. 226, 1830–1844 (2007)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Perumal, K., Ungati, J.M., Kumar, G., Jain, N., Gaurav, R., Srivastava, P.R.: Test data generation: a hybrid approach using cuckoo and tabu search, Swarm, Evolutionary, and Memetic Computing (SEMCCO2011). Lecture Notes in Computer Sciences vol. 7077, pp. 46–54 (2011)Google Scholar
  50. 50.
    Rajini, A., David, V.K.: A hybrid metaheuristic algorithm for classification using micro array data. Int. J. Sci. Eng. Res. 3(2), 1–9 (2012)Google Scholar
  51. 51.
    Rampriya, B., Mahadevan, K., Kannan, S.: Unit commitment in deregulated power system using Lagrangian firefly algorithm. In: Proceedings of IEEE International Conference on Communication Control and Computing Technologies (ICCCCT2010), pp. 389–393 (2010)Google Scholar
  52. 52.
    Ren, Z.H., Wang, J., Gao, Y.L.: The global convergence analysis of particle swarm optimization algorithm based on Markov chain. Control Theory Appl. (in Chinese) 28(4), 462–466 (2011)MATHGoogle Scholar
  53. 53.
    Sayadi, M.K., Ramezanian, R., Ghaffari-Nasab, N.: A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. Int. J. Ind. Eng. Comput. 1, 1–10 (2010)CrossRefGoogle Scholar
  54. 54.
    Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firely algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)CrossRefGoogle Scholar
  55. 55.
    Speed, E.R.: Evolving a Mario agent using cuckoo search and softmax heuristics. In: Proceedings of the Games Innovations Conference (ICE-GIC), pp. 1–7 (2010)Google Scholar
  56. 56.
    Srivastava, P.R., Chis, M., Deb, S., Yang, X.S.: An efficient optimization algorithm for structural software testing. Int. J. Artif. Intell. 9(S12), 68–77 (2012)Google Scholar
  57. 57.
    Taweewat, P., Wutiwiwatchai, C.: Musical pitch estimation using a supervised single hidden layer feed-forward neural network. Expert Syst. Appl. 40, 575–589 (2013)CrossRefGoogle Scholar
  58. 58.
    Tein, L.H., Ramli, R.: Recent advancements of nurse scheduling models and a potential path. In: Proceedings of 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA 2010), pp. 395–409 (2010)Google Scholar
  59. 59.
    Valian, E., Mohanna, S., Tavakoli, S.: Improved cuckoo search algorithm for feedforward neural network training. Int. J. Artif. Intell. Appl. 2(3), 36–43 (2011)Google Scholar
  60. 60.
    Valian, E., Tavakoli, S., Mohanna, S., Haghi, A.: Improved cuckoo search for reliability optimization problems. Comput. Ind. Eng. 64, 459–468 (2013)CrossRefGoogle Scholar
  61. 61.
    Vazquez, R.A.: Training spiking neural models using cuckoo search algorithm. In: 2011 IEEE Congress on Eovlutionary Computation (CEC’11), pp. 679–686 (2011)Google Scholar
  62. 62.
    Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gradient free optimization algorithm. Chaos, Solitons Fractals 44(9), 710–718 (2011)CrossRefGoogle Scholar
  63. 63.
    Wang, F., He, X.-S., Wang, Y., Yang, S.M.: Markov model and convergence analysis based on cuckoo search algorithm. Comput. Eng. 38(11), 180–185 (2012)Google Scholar
  64. 64.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)CrossRefGoogle Scholar
  65. 65.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, UK (2008)Google Scholar
  66. 66.
    Yang, X.S.: Introduction to Computational Mathematics. World Scientific Publishing, Singapore (2008)CrossRefMATHGoogle Scholar
  67. 67.
    Yang, X.S.: Engineering Optimisation: An Introduction with Metaheuristic Applications. John Wiley and Sons, USA (2010)CrossRefGoogle Scholar
  68. 68.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez, J.R. et al. (eds.) Nature Inspired Cooperative Strategies for Optimisation (NICSO 2010). Studies in Computational Intelligence , vol.28, 4 pp. 65–74. Springer, Berlin (2010)Google Scholar
  69. 69.
    Yang, X.S., Deb, S.: Eagle strategy using Lévy walks and firefly algorithm for stochastic optimization. In: Gonzalez, J.R. et al. (eds.) Nature-Inspired Cooperative Strategies for Optimization (NICSO 2010), Studies in Computational Intelligence, vol. 284, pp. 101–111. Springer, Berlin (2010)Google Scholar
  70. 70.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications, SAGA 2009. Lecture Notes in Computer Sciences, vol. 5792, pp. 169–178 (2009)Google Scholar
  71. 71.
    Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-inspired Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  72. 72.
    Yang, X.S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector machine for business optimization and applications, Networked Digital Technologies 2011. Commun. Comput. Inf. Sci. 136, 53–66 (2011)Google Scholar
  73. 73.
    Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 1–18 (2012)MATHGoogle Scholar
  74. 74.
    Yang, X.S.: Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation, pp. 240–249. Springer (2012)Google Scholar
  75. 75.
    Yang, X.S., Karamanoglu, M., He, X.S.: Multi-objective flower algorithm for optimization. Procedia Comput. Sci. 18, 861–868 (2013)CrossRefGoogle Scholar
  76. 76.
    Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceeings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications, USA (2009)Google Scholar
  77. 77.
    Yang, X.S.: Chaos-enhanced firefly algorithm with automatic parameter tuning. Int. J. Swarm Intell. Res. 2(4), 1–11 (2011)CrossRefGoogle Scholar
  78. 78.
    Yang, X.S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector machine for business optimization and applications, Networked Digital Technologies (NDT’2011). Commun. Comput. Inform. Sci. 136(Part I), 53–66 (2011)Google Scholar
  79. 79.
    Yang, X.S.: Multiobjective firefly algorithm for continuous optimization. Engineering with Computers 29(2), 175–184 (2013)CrossRefGoogle Scholar
  80. 80.
    Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Num. Opt. 1(4), 330–343 (2010)Google Scholar
  81. 81.
    Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)MathSciNetCrossRefGoogle Scholar
  82. 82.
    Yang, X.S., Cui, Z.H., Xiao, R.B., Gandomi, A.H., Karamanoglu, M.: Swarm Intelligence and Bio-inspired Computation: Theory and Applications. Elsevier, Waltham (2013)Google Scholar
  83. 83.
    Yildiz, A.R.: Cuckoo search algorithm for the selection of optimal machine parameters in milling operations. Int. J. Adv. Manuf. Technol. (2012). doi: 10.1007/s00170-012-4013-7
  84. 84.
    Yousif, A., Abdullah, A.H., Nor, S.M., Abdelaziz, A.A.: Scheduling jobs on grid computing using firefly algorithm. J. Theor. Appl. Inform. Technol. 33(2), 155–164 (2011)Google Scholar
  85. 85.
    Zaman, M.A., Matin, M.A.: Nonuniformly spaced linear antenna array design using firefly algorithm. Int. J. Microw. Sci. Technol. 2012, 8 (2012). Article ID: 256759, doi: 10.1155/2012/256759
  86. 86.
    Zheng, H.Q., Zhou, Y.: A novel cuckoo search optimization algorithm based on Gauss distribution. J. Comput. Inform. Syst. 8, 4193–4200 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations